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Plants deploy intracellular innate immune receptors to recognize
pathogens and initiate disease resistance. These nucleotide-binding,
leucine-rich repeat (NB-LRR) proteins are activated by pathogen
effector proteins that are delivered into the host cell to suppress
host defense responses. Little is known about the sites and
mechanisms of NB-LRR activation, but some NB-LRR proteins can
function inside the plant nucleus. We demonstrate that RPM1 is
activated on the plasma membrane and does not relocalize to the
nucleus. An autoactive RPM1(D505V) allele that recapitulates key
features of normal RPM1 activation also resides on the plasma mem-
brane. There is no detectable relocalization of activated RPM1 to the
nucleus. Hindering potential nuclear entry of RPM1-Myc did not
affect either its effector-triggered hypersensitive-response (HR) cell
death or its disease resistance functions, further suggesting that
nuclear translocation is not required for RPM1 function. RPM1 teth-
ered onto the plasma membrane with a dual acylated N-terminal
epitope tag retained the ability to mediate HR, consistent with this
RPM1 function being activated on the plasma membrane. Plant NB-
LRR proteins can thus function at various locations in the cell.
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lants use a two-tiered receptor-based immune system to pre-

vent the invasion of pathogenic microorganisms (1, 2). Plants
express transmembrane pattern recognition receptors to detect
microbe-associated molecular patterns (MAMPs). This leads to
intracellular signaling and transcriptional output responses that
can halt the growth of nonpathogens and is termed MAMP-
triggered immunity (MTI). Successful pathogens suppress or
dampen MTI via delivery of “effector proteins” into the host cell.
Hence, effectors are virulence factors. To counter the activities of
effector proteins, plants deploy polymorphic intracellular recep-
tors. The largest class of these receptors, composed of nucleotide-
binding, leucine-rich repeat (NB-LRR) proteins, has been con-
served for several hundred million years and features a structure
consisting of N-terminal signaling domains, a conserved central
nucleotide-binding site, and C-terminal leucine-rich repeats.
Plant NB-LRR proteins are structurally and functionally analo-
gous to animal nucleotide-binding leucine-rich repeat receptor
(NLR) innate immune receptors (3, 4). NB-LRR receptors rec-
ognize pathogen-encoded effector proteins either directly or in-
directly via effector action on a host target. This initiates signal
transduction and transcriptional reprogramming, resulting in ef-
fector triggered immunity and localized hypersensitive-response
(HR) cell death (1, 2).

The functions of NB-LRR domains have been intensively in-
vestigated, but the mechanisms of NB-LRR activation and sub-
sequent signaling are not well defined (5). A reasonable model
has emerged wherein the N-terminal coiled-coil (CC) or Toll-
interleukin-1 receptor (TIR) domain, in conjunction with the
LRR domain, inhibits nucleotide exchange and/or hydrolysis in
the resting state. Effector recognition, whether direct or indirect,
results in an “unfurling” of the molecule, altered intra- and in-
termolecular interactions, changes in association with cocha-

www.pnas.org/cgi/doi/10.1073/pnas.1104410108

perones, enhanced nucleotide turnover, and consequent down-
stream signaling, which occurs by mechanisms that are largely
unknown (6-9).

Preactivation NB-LRR proteins have been localized to multi-
ple subcellular compartments (10). NB-LRR activation has been
associated with dynamic relocalization. In some cases, a small
fraction of the total NB-LRR pool appears to relocalize to the
nucleus, where it is thought to regulate defense gene transcription
(10). These examples include both coiled coil (CC) (11-13) and
TIR-NB-LRR (14-16) proteins and the RRS1 fusion protein that
juxtaposes an NB-LRR protein with a WRKY class DNA binding
domain (17). To date, however, there is no generalization re-
garding site(s) of NB-LRR activation or action.

RPM1 is a CC-NB-LRR protein (18). Inactive, signal-competent
RPM1 is a plasma membrane-associated protein (19). RPM1 in-
teracts with another plasma membrane localized protein, RIN4.
RPM1 recognizes effector-mediated modifications of RIN4 in the
presence of the bacterial type III effector proteins AvrRpm1 or
AvrB (20, 21). AvrRpm1 and AvrB are also localized to the host
plasma membrane by postdelivery acylation, and this localization
is required for their ability to modify RIN4 and, consequently,
activate RPM1 (22). RIN4 is required for wild-type levels of
RPM1 accumulation at the membrane (20) and is a suppressor of
weak RPM1 autoactivity (23). Hence, it is plausible that RPM1
activation occurs on the plasma membrane. Whether activated
RPM1 relocalizes to initiate downstream signaling is not clear.

In this study, we determine the localization of an autoactive
RPM1 allele that mimics accurately the activation state of wild-
type RPM1. Collectively, our results indicate that activated RPM1
remains on the plasma membrane and that nuclear localization of
RPML1 is not required for its function. Our results focus attention
on how the activation state of RPM1 is transduced into an effi-
cient disease resistance response.

Results

Transient Expression of an MHD Domain RPM1 Mutant Allele Induces
Cell Death in Nicotiana benthamiana. We wanted to address whether
RPM1 relocalizes following activation. In principle, pre- and
postactivation RPM1 states could coexist in the same cell during
activation, due to temporal and spatial differences in signaling
mediated by delivery of the relevant effector proteins. We there-
fore generated an autoactive allele of RPMI1 to simplify the
analysis of activation and potential consequent relocalization by
biochemical methods. Mutations in the conserved MHD motif and
Walker B motif can cause autoactivity that is likely achieved by
intramolecular conformational rearrangement. We constructed
myc-epitope tagged RPM1(D505V) and RPM1(D287A) alleles
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Fig. 1. The MHD domain mutant RPM1(D505V) induces cell death in
N. benthamiana. (A) RPM1 mutants used in this work. Wild-type sequences
(Upper) and mutant sequences (Lower) are shown. (B and C) Estradiol-
inducible RPM1 alleles were transiently expressed in N. benthamina (ODgo =
0.3). The HR-inducing activity of the RPM1 alleles was measured by ion leak-
age. (D and E) RPM1 proteins were detected by immunoblot. Samples were
collected at 5 h after the induction with 40 pM estradiol and 40 pg of total
extract loaded. Rubisco was used for protein loading control. Protein samples
from uninfiltrated leaves were used as a control for nonspecific cross-reactivity.

(Fig. 14). Each was sufficient to induce cell death, as measured by
changes in media conductivity, when transiently expressed in N.
benthamiana (Fig. 1 B and C and Fig. S1). Because RPM1(D505V)
exhibited stronger autoactivity than RPM1(D287A) (Fig. S14), it
was used for most of the subsequent experiments.

We also reconstructed three previously isolated RPM1 loss-of-
function mutants to test their effects in cis on the autoactivity of
RPM1 (D505V) (24). The first, RPM1(S43F), is located in the
N-terminal coiled-coil domain; the second, RPM1(P105S), is lo-
cated in a highly variable spacer region; and the third, RPM1
(G205E), is in the Walker A motif (P-loop) domain required for
ATP binding. As expected, none of these three mutants is auto-
active (Fig. 1C). Autoactivity of RPM1(D505V) requires the P-
loop motif because it is suppressed in cis in RPM1(G205E/D505V)
(Fig. 1B). This result shows that autoactivation of RPM1(D5050V)
mimics P-loop—dependent activation of wild-type RPM1 triggered
by type III effectors. Similarly, autoactivity of RPM1(D505V)
requires the CC domain because it is also suppressed in RPM1
(S43F/D505V) (Fig. 1C). By contrast, RPM1(P1055/D505V)
retains autoactivity (Fig. 1C), suggesting that the functional re-
quirement for RPM1(P105) occurs before the state in normal
RPM1 activation mimicked by RPM1(D5050V). The steady-state
abundance of RPM1 (D505V) protein is lower than that of RPM1
or the other mutant alleles (Fig. 1 D and E). Intramolecular sup-
pression of autoactivation restored wild-type accumulation to
RPM1(S43F/D505V). Thus, the low levels of RPM1(D505V)
protein are consistent with our previous report that the disap-
pearance of RPM1 is correlated with effector-mediated activation
and the onset of HR cell death (19). We noted that two common
proteasome inhibitors, MG132 and clasto-lactacystin B-lactone,
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could not stabilize steady-state levels of RPM1(D5050V), sug-
gesting that the disappearance of activated RPM1 is not mediated
by the proteasome.

Autoactivity of RPM1(D505V) Can Be Suppressed by RIN4. RIN4 is
formally a negative regulator of RPM1 because RPM1 is weakly
autoactive in a 7in4 null mutant (23). We co-expressed RIN4 and
RPM1(D505V) in N. benthamiana to test the effect of RIN4 on
the autoactivity of RPM1(D505V). RIN4 was constitutively
expressed from its native promoter, and RPM1(D505V) ex-
pression was induced with estradiol 2 d after Agrobacterium in-
filtration. Our results showed that RIN4 expression delayed and
diminished cell death (Fig. 24). Co-expression of RIN4 also
delayed the disappearance of RPM1(D505V) (Fig. 2B).

We confirmed and extended these findings by expressing Myc
epitope-tagged RPM1(D505V) from its native promoter [gRPM1
(D505V))-Myc] in transgenic Arabidopsis rpml or rpml rps2 rin4
plants to test the effects of RIN4 on the autoactivity of RPM1
(D505V) in Arabidopsis. Use of rpm1 rps2 rin4 as a recipient for
these experiments, instead of rpmI rin4, is necessary to avoid the
lethal ectopic autoactivation of RPS2 in the latter genotype (25).
Independent transgenic gRPM1(D505V))-Myc rpm 1 lines exhibited
an essentially wild-type growth phenotype (Fig. 2 C and D) and
expressed variable levels of RPM1(D505V). By contrast, in-
dependent transgenic gRPM1(D505V) rpml rps2 rin4 lines were
difficult to recover, severely stunted as homozygous T2 individ-
uals, expressed RPM1 at very low levels, and typically expressed
the PR-1 protein, a marker of ectopic basal defense (Fig. 2 C and
D). The severity of the dwarf phenotype was correlated with
RPMI1(D505V) levels in gRPMI(D505V) rpml rps2 rind T2
transgenic plants (Fig. 2 C and D). These results support our
conclusion that RIN4 can also suppress the autoactivity of RPM1
(D505V) in transgenic Arabidopsis (Fig. 2D).

RPM1(D505V) levels in rpml transgenic lines were lower than
wild-type RPM1 from a well-characterized transgenic line, gRPM1-
Myc rpml (19), and were similar to the expression of the same
transgene introgressed into rar! (Fig. 2D). The RAR1 cochaperone
isrequired to maintain wild-type NB-LRR levels. Its absence results
inreduced NB-LRR levels that can drop below a threshold required
for function (24, 26). Hence, the level of RPM1-Myc detected in
rar] defines an RPM1 level lower than its functional threshold.

We extended this finding by crossing the dwarfed, PR-1 ex-
pressing, single-insertion gRPM1(D505V)-Myc rpm1 rps2 rin4 line
49 transgene (Fig. 2C) into rpm1 rps2. The resulting line had a wild-
type phenotype, and the expression level of RPM1(D505V) was
higher than that of the same transgene in an rpmI rps2 rin4 sibling
(Fig. 2E). The autoactivity of RPM1(D505V) in rpm 1 rps2 rin4 also
conferred enhanced basal resistance to the virulent pathogen Pto
DC3000, and this was suppressed by the presence of RIN4 (Fig.
2F). We conclude that RIN4 can partially stabilize RPM1(D505V)
and fully suppress its autoactivity of RPM1(D505V).

Effector-Mediated Activation of RIN4-Repressed RPM1(D505V). RPM 1
(D505V), repressed by RIN4 in the lines shown in Fig. 2 C-E, was
reactivated following recognition of AvrRpm1 delivered via the type
IIT secretion system in both HR and growth restriction assays (Fig.
S2A-C). RPM1(D505V) levels in these lines are well below that of
wild-type RPM1 (Fig. 2D). We infer that RPM1(D505V) has higher
functional efficiency than wild type following effector-mediated
activation. The weaker RPM1(D287A) autoactive allele also sup-
ported effector-mediated activation, at least for the ability to trigger
HR in N. benthamiana (Fig. S1C). Thus, the autoactive RPM1
(D505V) allele behaves like wild-type RPM1 with respect to both
inhibition by RIN4 and subsequent effector-mediated activation.

Activated RPM1(D505V) Localizes on the Arabidopsis Plasma Mem-
brane. We localized RPM1(D505V) in both the presence and
the absence of RIN4 in rpmI or rpml rps2 rin4 transgenic plants.
We separated extracts into soluble and microsomal membrane
fractions by ultracentrifugation (20) (Fig. 34). These microsomal
fractions were further separated into plasma membranes and
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endomembranes by two-phase partitioning (27). Like wild-type
RPM1 (19), RPM1(D505V) is predominantly localized to the
plasma membrane (Fig. 3B). It is noteworthy that the autoactive
RPMI1(D505V) in rpml rps2 rin4 also fractionates to the plasma
membrane. This result demonstrates that active RPM1 is retained
at the plasma membrane.

Given recent interest in the relocalization of NB-LRR proteins
to the nucleus, we also tested whether RPM1(D505V) relocalized
to that compartment. We identified no RPM1(D505V) specifi-
cally in our nuclear extracts, even when these were overloaded by
20-fold (Fig. 3C). Overloading by 20-fold means that if 5% of the
total RPM1(D505V) were in the nucleus, then that signal would
equal the signal detected in the nuclear depleted lanes of Fig. 3C.
Thus, our detection limit is significantly less than 5%. These
results indicate that it is highly unlikely that activated RPM1
(D505V) relocalizes to the nucleus.

We also established that there is no specific fragment processed
from N-terminally tagged autoactive T7-RPM1(D505V)-YFP-
HA alleles during its activation (Fig. S3). The results validate our
results using C-terminal epitope-tagged RPM1(D505V). The
results shown in Fig. 3 and Fig. S3 are consistent with the full-
length of RPM1(D505V) being the functional molecule.

RPM1(D505V) Localizes on the Plasma Membrane of N. benthamiana
Epidermal Cells. We localized the autoactive T7-RPM1(D505V)-
YFP-HA and control T7-RPM1-YFP-HA via confocal micros-
copy. PLC2-CFP was used as a plasma membrane marker (28).
The estradiol-induced expression of T7-RPM1(D505V)-YFP-HA
caused cell death beginning ~5 h post induction (Fig. S34).
Consistent with this, dead or dying epidermal cells of N. ben-
thamiana had shrunken shapes under the confocal microscope at
this time point (Fig. 4). We observed the localization of RPM1
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with Tukey-Kramer HSD with 95% confidence limits.

(D505V) in precisely the same cell over time (Fig. 4). RPM1
(D505V) was localized predominantly on the plasma membrane at
4 and 4.5 h post induction. Epidermal cell shape was unchanged at
these time points. RPM1(D505V) levels were reduced, and the
epidermal cell exhibited altered morphology at 5 h post induction.
There was some alteration in the pattern of the remaining RPM1
(D505V) signal distributed along the plasma membrane, and some
redistribution into putative endomembrane structures at the 5-h
time point. Because the plasma membrane marker PLC2 colo-
calized with RPM1(D505V) in the endomembrane structures, and
because the translocation of PLC2 occurred only when the cell
began to die, these endomembrane structures are likely to be a
consequence of cell death, rather than a signaling intermediate.
Preactivation T7-RPM1-YFP-HA was stably localized on the
plasma membrane throughout this time course.

Excluding the Entry of RPM1 into the Nucleus Does Not Block Its
Function. We further confirmed that RPM1(D505V) neither
relocalizes to, nor functions in, the nucleus, using nuclear export
signal (NES)-tagged RPM1-Myc-NES under the control of the
native RPM1 promoter (§RPM1-Myc-NES) (Materials and Meth-
ods) (11). We generated stable transgenic gRPMI-Myc-NES rpm1
and gRPM1-Myc-nes rpmI plants and tested for effector-mediated
HR and disease resistance functions over a range of expression
levels. The efficiency of RPM1 function in either assay was de-
termined by the RPM1 expression level, and not by the NES or
mutant (nes) tag, indicating that the NES sequence does not alter
RPM1 function (Fig. S4). Addition of a nuclear localization signal
(NLS) onto these NES-tagged molecules affected localization,
but did not alter function (Fig. S5). The nuclear localization of
NLS-RPM1-GFP-NES was reduced, compared with that of NLS-
RPM1-GFP-nes, showing that the NES tag is functional. How-
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Fig. 3. RPM1(D505V) localizes on the plasma membrane in Arabidopsis. (A)
RPM1(D505V) resides on microsomal membranes. Total protein (T) was
separated into soluble (S) and microsomal membrane (M) fractions by ul-
tracentrifugation. COXII, a mitochondria membrane protein, was used as
a membrane protein marker. Rubisco was used as a soluble protein marker.
(B) RPM1(D505V) resides on the plasma membrane. The microsomal mem-
brane fraction (M) was further separated into the plasma membrane frac-
tion (PM) and the endomembrane fraction (EM). H*-ATPase, COXII, and Bip
were used as plasma membrane, mitochondrial membrane, and endoplasmic
reticulum markers, respectively. (C) RPM1(D505V) is not in the nuclear
fraction. RPM1(D505V) was present in nuclear depleted (ND) but not in
nuclear enriched (NE) fractions. Histone 3A was used as a nuclear protein
marker. COXII was used as a non-nuclear marker. Note that NE fractions are
loaded at a 20x yield equivalent compared with ND fractions. Three grams
of leaves from plants grown under 16-h-long days for 6 wk were used for the
experiments. The leaves of RPM1(D505V) rom1 and RPM1(D505V) rom1 rps2
rin4 are from line 4 and line 11, respectively (Fig. 2D).

ever, the two proteins exhibited the same efficiency for effector-
mediated HR. These data also support the contention that, under
these expression conditions, the HR function of RPM1 does not
require relocalization to the nucleus.

Plasma Membrane-Tethered RPM1 Retains HR Function in N.
benthamiana. If translocation of RPM1 from the plasma mem-
brane to other subcellular locations is necessary for its function,
then a plasma membrane-tethered RPM1 should exhibit reduced
function. The first 12 amino acids of CBL1 (calcineurin B-like
protein 1) can target proteins to the plasma membrane due to
myristoylation on G2 and palmitoylation on C3 (29). We added
this 12-amino-acid peptide (i.e., CBL) to the N terminus of
several RPM1-Myc derivatives to tether them to the plasma
membrane. A mutant CBL (mCBL) that could not be acylated
was made as a control (Fig. 54). We surprisingly found that
~50% of the RPM1(G205E/D505V) P-loop mutant described
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Fig. 4. T7-RPM1(D505V)-YFP localizes to the plasma membrane of N. ben-
thamiana epidermal cells. Transient expression of T7-RPM1(D505V)-YFP or T7-
RPM1-YFP (ODggo = 0.3) was induced with 20 pM estradiol at 48 h after agro-

bacteria infiltration. Images were collected at the time after induction noted at
left. 355:PLC2-CFP (ODggo = 0.3) was co-expressed as a plasma membrane marker.

above (Fig. 1) was soluble (Fig. 5B), whereas, as noted in Fig. 4,
both RPM1 and RPM1(D505V) were strictly membrane local-
ized. We used this result to test whether the CBL tag could
retether the soluble RPM1(G205E/D505V) protein to the
membrane. CBL, but not mCBL, efficiently tethered the soluble
RPM1(G205E/D505V) to the membrane (Fig. 5B). Two-phase
partitioning demonstrated that CBL-RPM1(G205E/D505V) was
localized to the plasma membrane (Fig. 5D). Both CBL-RPM1
and mCBL-RPM1 were also retained on plasma membrane lo-
calization (Fig. 5 C and D).

Constitutive overexpression of CBL-RPM1, but not of mCBL-
RPM1 or RPM1, led to weak autoactivity in N. benthamiana com-
pared with effector-activated HR of the same molecules (compare
Fig. 5E to Fig. S6). Accumulation of CBL-RPMI1 was lower than
that of either mCBL-RPM1 or RPMI1, consistent with weak auto-
activation (Fig. S6). Hence, the weak autoactivity observed with
CBL-tagged RPM1, but not with mCBL-tagged RPM1, is likely
due to the dual lipid modification rather than to the mere pres
ence of the N-terminal tag. The weak autoactivity of CBL-RPM1
was suppressed by co-expression with RIN4 (Fig. S6), making this
molecule a useful tool to test whether tethering RPM1 to the
plasma membrane alters effector-mediated activation of HR.

We thus co-expressed in N. benthamiama CBL-RPM1 under
the control of the 35S promoter and RIN4 under the control of its
native promoter and then conditionally induced AvrRpml 36 h
post infiltration. CBL-RPM1-Myc supported nearly wild-type
levels of effector-mediated HR (Fig. 5E). mCBL-RPM1 was less
efficient than CBL-RPM1. The functional difference between
CBL-RPM1 and mCBL-RPM1 could suggest that the dual-lipid
modification of the CBL tag has positive effects on both autoac-
tivity and effector-mediated RPM1-dependent HR, which par-
tially compensates for any negative effects of the N-terminal tag.
CBL-RPM1(G205E/D505V) did not support effector-mediated
RPM1-dependent HR, indicating that HR requires a functional
nucleotide-binding site, but that retethering the largely soluble
RPM1(G205E/D505V) to the plasma membrane is insufficient to
rescue the P-loop loss-of-function mutation. We conclude that the
robust HR function of CBL-RPM1 indicates that plasma mem-
brane-tethered RPM1 retains its HR function.

Discussion

This study was motivated by the question of how NB-LRR
proteins, specifically RPM1, are activated by pathogen effectors,
or by the activity of pathogen effectors on associated host targets,
and whether activation is accompanied by dynamic relocalization
of some or all of the active RPM1. Detailed analyses of this kind
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Fig. 5. Plasma membrane-tethered RPM1 retains effector-mediated HR
function in N. benthamiana. (A). CBL tag contains dual-lipid modification
sites. (B) The CBL tag tethers soluble RPM1(G205E/D505V)-Myc to the micro-
somal membrane following conditional transient expression in N. bentha-
miama. (C) CBL and mCBL tags do not affect the membrane localization of
RPM1-Myc. (D) CBL-tagged proteins localize on the plasma membrane. For B-
D, proteins were transiently expressed in N. benthamiana under the control
of 35S promoter (ODgoo = 0.5). Samples were collected at 40 h after agro-
bacteria infiltration. (E) The HR function of CBL-tagged RPM1. CBL- or mCBL-
tagged RPM1-myc (R1) under the control of 35S promoter, T7-RIN4 (R4) under
the control of its native promoter and AvrRpm1-HA (AvrRpm1) under the
control of a dexamethasone (Dex)-inducible promoter were co-expressed in
N. benthamiana (ODgoo = 0.5, 0.3, and 0.05, respectively). AvrRpm1 was in-
duced with 20 pM Dex at 36 h after infiltration. (F) The expression level of the
constructs. The protein levels of the tagged RPM1 and RIN4 were detected at
2 h after induction. The protein levels of AvrRpm1 were detected at 6 h after
induction.

are still rare for plant NB-LRR proteins, and generalities have
proven difficult to establish (5, 10).

Here, we used both transient and stable transgenic expression
in transgenic Arabidopsis at native levels to establish that an auto-
active RPM1(D505V) allele resides on the plasma membrane
and does not obviously relocalize. The autoactivity of this allele
is P-loop—dependent, suggesting that its activation proceeds by a
mechanism similar to the activation of RPM1 by type I1I effectors.
The autoactivity of RPM1(D505V) was repressed by RIN4 in
both experimental systems. RIN4-repressed RPM1(D505V) could
still be activated by the type III effector AvrRpm1. Hence, RPM1
(D505V) autoactivity is a reasonable proxy for activation of wild-
type RPML1. Our cell fractionation and confocal microscopy results
indicate that activated RPM1 resides solely on the plasma mem-
brane and is not detectable in the nucleus under conditions where
we can easily detect less than 5% of RPMI1 protein in the cell.
Autoactive alleles in the MHD domain of NB-LRR proteins are
likely to be generically useful tools to identify the endogenous
partners and regulators of NB-LRR proteins and to sequence
activation steps with subcellular localization.

We also tethered RPM1 onto the plasma membrane using a
N-terminal dual-acylation sequence. This RPM1 derivative re-
tained the ability to trigger HR in response to AvrRpm1 in the
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presence of RIN4. Collectively, our results suggest that activated
RPMI1 resides on the plasma membrane, that effector-mediated
activation of RPM1 occurs on the plasma membrane, and, fi-
nally, that anchoring RPM1 to the plasma membrane does not
significantly alter its HR induction function. Our results are
consistent with the conclusion that RPM1 function does not
require nuclear translocation for function.

At least two other NB-LRR receptors are likely to act at the
plasma membrane. Pit is a CC-NB-LRR protein that is active
against rice blast fungus. An analogous MHD domain allele, Pit
(D485V), is autoactive in N. benthamiana. Confocal images from
rice protoplasts indicated that Pit and Pit(D485D) are plasma
membrane-localized (30). Pit interacts with Racl; Pit(D485V), but
not Pit, activated Racl (a regulator of reactive oxygen species
production and cell death) on the plasma membrane, suggesting
that activated Pit also initiates signal transduction on the plasma
membrane (30). The plasma membrane-localized CC-NB-LRR
protein RPS2 also associates with RIN4 at the membrane, and the
relevant type III effector, AvrRpt2, is also likely to be acylated and
localized to the plasma membrane, suggesting that the activation of
RPS2 also starts on the plasma membrane. Effector-activated RPS2
is stable and localized to a microsomal compartment, although it is
not clear whether this is actually the plasma membrane (25, 31).

We report the surprising finding that the P-loop is important
for RPM1 localization. We noted that ~50% of RPM1(G205E/
D505V) was soluble and lacked autoactivity, compared with the
nearly complete plasma membrane association of both RPM1
and RPM1(D505V). Notably, CBL-RPM1(G205E/D505V) is still
a complete loss-of-function allele even though it is tethered to the
plasma membrane. Thus, mutations in the RPM1 P-loop affect
both localization and function. Consistent with this, the P-loop is
required for intramolecular interactions of Rx (32), oligomeri-
zation of N (33), and direct interaction of L6 with the AvrL6
effector protein (34). The wide effects of P-loop mutations on
NB-LRR function are therefore likely to reflect not only the
necessity of nucleotide binding to maintain a functional resting
state conformation, but also the correct localization of that op-
timal conformer for each NB-LRR protein.

RIN4 interacts with the CC domain of RPM1 (20). RIN4 could
suppress the autoactivity of RPM1(D505V) either by blocking
a required conformational change involving the CC domain or by
blocking the interaction of RPM1 with downstream signaling
components. The CC domain of RPM1 is critical for function (24).
Similarly, the CC domain of the barley powdery mildew A NB-
LRR immune receptor MLA interacts with WRKY transcription
factors, and a CC dimer is both necessary and sufficient for sig-
naling and required for the interaction of MLA with the WRKY
transcription factors (35). These examples provide evidence that
the CC domain of NB-LRR immune receptors can provide func-
tions that may change during activation and can demonstrably act
in different subcellular contexts. Similar findings are suggested for
TIR domains (36) and for the noncanonical N terminus of Prf (37),
focusing future work on understanding how these domains act as
sensors of both effector-mediated target modification and initi-
ators of downstream signaling.

Animal NLR proteins are also found in diverse subcellular
locations, require analogous chaperones to maintain preactivation
competence, and can relocalize upon activation to participate in
a variety of signaling complexes. The mammalian CIITA NLR
protein functions in the nucleus (38-40). NOD2 is present at, and
recruits a downstream partner to, the plasma membrane; a muta-
tion in its LRR renders NOD2 cytosolic and nonfunctional (41).
NOD1 and NOD?2 recruit autophagy components focally to
plasma membrane sites of bacterial infection, and a common
NOD? variant associated with Crohn’s disease fails to do so (42).
These studies reveal that mammalian NLRs localize to different
places in the cell before activation, that they can dynamically
relocalize, and that their cellular localization influences down-
stream function. The sum of the data from plant NB-LRR and
animal NLR intracellular immune receptors is consistent with the
conceptual role of NB-LRR proteins as monitors of cellular ho-
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meostasis surveying a wide array of cellular defense machineries
across a variety of subcellular addresses (1).

Materials and Methods

Plant Growth Conditions. Arabidopsis plants used for HR and disease re-
sistance experiments were grown at 24 °C under a 8-h light/16-h dark cycle.
Plants for other purposes and N. benthamiana plants were grown in a
greenhouse at 24 °C under a 16-h light/8-h dark cycle.

Vectors. Vectors used in this study were constructed as described in S/
Materials and Methods.

Transient Protein Expression in N. benthamiana. Agrobacterium-mediated
transient expression assays in N. benthamiana are described in SI Materials
and Methods.

Total Protein Extraction and Primary Antibodies. Total protein was extracted
with extraction buffer [20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA,
1% SDS, 10 mM DTT]. The supernatant after centrifugation at 9,000 x g for 3
min was used for Western blot. The primary antibodies used were anti-Myc
(University of North Carolina, Chapel Hill), anti-GFP (Roche), anti-HA (Roche),
anti-T7 (Novagen), anti-COXII (Agrisera), anti-H*-ATPase (Agrisera), anti-Bip
(Santa Cruz Biotechnology), anti-RIN4 (20), and anti-histone H3 (Abcam;
ab1791). Anti-PR-1 (a gift from X. Dong, Duke University, Durham, NC).
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Membrane Fractionation and Isolation of Nuclei. Two-phase partitioning was
performed as previously described (27) with a few modifications as described
in SI Materials and Methods. Plant nuclei were isolated with a plant nuclei
isolation kit (Sigma-Aldrich). Semipure preparation of nuclei was performed
according to the protocol (Sigma-Aldrich).

HR and Disease Resistance Assays. For conductivity assays, four leaf discs (0.8-
cm diameter) were collected and floated in 5 mL of water with three rep-
licates per sample (n = 12) at 2 h after induction with estradiol or dexme-
thasone. lon leakage was measured at indicated time points using
a conductivity meter (Orion; model 130). For HR assay, the leaves of 5-wk-old
plants were infiltrated with Pto DC3000(avrRpm1) at 5 x 107 cfu/mL. The
leaves were stained with Trypan blue 6 h after infiltration (43). Bacterial
growth was measured as described (44).

Confocal Microscopy. The localization of T7-RPM1(D505V)-YFP and T7-RPM1-
YFP was observed under confocal microscopy (LSM 510 Meta; Carl Zeiss) as
described in S/ Materials and Methods.
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Vector Constructs. The Myc sequence is directly fused to the 3’
sequence of RPM1 by PCR from the pGPTV-HPT binary vector
(1). The GFP sequence was fused to the 3’ sequence of RPM1 by
NotI ligation. The nuclear export signal (NES) sequence or nes
sequence (2) was fused to the 3’ sequence of myc or GFP by PCR.
The nuclear localization signal (NLS) sequence, CBL sequence,
mutant CBL (mCBL), or T7 sequence was fused to the 5’ sequence
of RPM1 by PCR. The promoter region of RPM1 (1 kb) was fused
to the 5’ sequence of RPM1 by PCR. The constructs of gRPM1
(D505V)-myc, gRPM1-myc-NES, and gRPMI-myc-nes were in
a Gateway vector pGWB1 (3). Estradiol-inducible expression
constructs were in the Gateway vector pMDC7 (4) or pMDC7-
YFP-HA (YFP-HA sequence was fused to pMDC7 by Pacl and
Spel ligation). Constructs using the 35S promoter were in the
Gateway vector pGWB2 (3). The Dex:AvrRpm1-HA construct
was described previously (5). The T7 epitope sequence was fused
to the 5 cDNA sequence of RIN4. The promoter region of RIN4
(1.6 kb) was fused to the 5" sequence of T7-RIN4. The construct
was in a pBAR1-GW destination vector (6). The pPBAR1-GW was
constructed by inserting a Gateway cassette (Invitrogen) into the
multicloning sites of pPBAR1 with HindIII and Sacl ligation. The
construct of 35S:PLC2-CFP was a gift from E. Washington (Uni-
versity of North Carolina, Chapel Hill). The following sequences
were used:

NES: 5’-atggacgagctgtacaagaacgagcttgctcttaagttggetggacttgat-
attaacaag-3’;

nes: 5'-atggacgagctgtacaagaacgagcttgctcttaaggecagetggageagat-
gctaacaag-3';

NLS: 5’-ggaccaaagaagaaacggaaggtc-3';

CBL: 5'-atgggctgcttccactcaaaggcagcaaaagaattt-3';

mCBL: 5'-atggccagcttccactcaaaggcagcaaaagaattt-3';

T7: 5'-atggctagcatgactggtggacagcaaatgggt-3'.

Agrobacterium-Mediated Transient Assay. Agrobacterium tumefa-
ciens strain GV3101 containing protein expression binary plas-
mid constructs was grown overnight at 28 °C with suitable

. Boyes DC, Nam J, Dangl JL (1998) The Arabidopsis thaliana RPM1 disease resistance
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antibiotics. Cells were resuspended in induction media [10 mM
Mes (pH 5.6), 10 mM MgCl,, and 150 pM actosyringone] and
incubated at room temperature for 2 h before infiltration. Co-
infiltrated Agarobacteria were mixed together to the desired final
ODgg values and were infiltrated into the leaves of 5- to 6-wk-old
Nicotiana benthamiana with a 1-mL needleless syringe. Agar-
obacterium containing the p19-expression plasmid (7) was always
co-infiltrated with other agrobacteria at a final ODgq of 0.2.

Aqueous Two-Phase Partitioning. Tissue was homogenized in
a mortar on ice with lysis buffer [0.33 M sucrose, 50 mM Tris-HCl
(pH 7.5), 5 mM EDTA, 5 mM DTT, and protease inhibitor
mixture (Sigma-Aldrich)]. The lysate was filtered with one-layer
miracloth and was further cleared with centrifugations at 2,000 x g
for 5 min and 6,000 x g for 10 min. The supernatant was fractioned
into a soluble fraction and microsomal membrane fraction with
ultracentrifugation at 100,000 x g for 30 min.: The fresh micro-
somal fraction was suspended in a suspension buffer [0.33 M su-
crose, 5 mM potassium phosphate buffer (pH 7.8), 3 mM KCl, and
protease inhibitor mixture (Sigma-Aldrich)]. The suspended
membrane was mixed with the two-phase solution (8) at a ratio of
1:5 (w/w). The final polymer concentration was 6.1% (w/w).

Confocal Microscopy. Agrobacteria expressing T7-RPM1(D505V)-
YFP and T7-RPM1-YFP were infiltrated in N. benthaminana
leaves. Leaf discs (5S-mm diameter) were floated in water with 20
pM estradiol for 3 h. The abaxial sides of leaves were observed
with a confocal microscope (LSM 510 Meta; Carl Zeiss). Images
were collected every 30 min. YFP fluorescence was excited at
514 nm and detected between 530 and 600 nm. CFP fluorescence
was excited at 458 nm and detected between 480 and 520 nm.
For observing the nuclear localization of RPM1-GFP, the in-
filtrated leaves were induced with 20 pM of estradiol for 8 h.
DAPI (10 pg/mL) was infiltrated into the leaves 30 min before
confocal observation. GFP fluorescence was excited at 488 nm
and observed between 505 and 530 nm. DAPI fluorescence was
excited at 375 nm and observed between 385 and 470 nm. All
samples were imaged with a 40x oil objective.

5

. Mackey D, Holt BF Ill, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas
syringae type Il effector molecules and is required for RPM1-mediated resistance in
Arabidopsis. Cell 108:743-754.

. Chung EH, et al. (2011) Specific threonine phosphorylation of a host target by two
unrelated type Ill effectors activates a host innate immune receptor in plants. Cell Host
Microbe 9:125-136.

. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression
system in plants based on suppression of gene silencing by the p19 protein of tomato
bushy stunt virus. Plant J 33:949-956.

. Larsson C, Sommarin M, Widell S (1994) Isolation of highly purified plant plasma
membranes and separation of inside-out and right-side-out vesicles. Methods Enzymol
228:451-469.
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Fig. S1. Autoactivity and hypersensitive-response (HR) functions of RPM1(D287A). (A) RIN4 co-expression represses the autoactivity of both RPM1(D55V) and
RPM1(D287A). Estradiol-inducible RPM1 alleles were transiently expressed in N. benthamina (ODggo = 0.3). T7-RIN4 under the control of its native promoter was
co-expressed (ODggp = 0.3) with RPM1 mutants to determine the effects of RIN4 on the autoactivity of RPM1 (D287A). (B) The expression levels of the RPM1
mutants and T7-RIN4. (C) Effector-mediated activation of RPM1(D287A)-myc. Estradiol-inducible RPM1(D287A)-myc and T7-RIN4 and Dex-inducible AvrRpm1-
HA (ODggo = 0.3, 0.3, and 0.05 respectively) were co-expressed in N. benthamiana. The leaf discs were stained with Trypan blue at 7 h after induction with 20 pM
of estradiol and 20 pM of Dex. Protein expression levels in 40 pug of total extract were detected at 5 h after induction.
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Fig. S2. Effector-activated hypersensitive response (HR) and disease resistance are retained by RPM1(D505V). (A) The HR function of RPM1(D505V). Leaves
from transgenic lines 4, 10, and 13 (Fig. 2 C and D) were infiltrated with 5 x 107 cfu/mL Pto DC3000 (avrRpm1) and stained with Trypan blue at 6 h after
infiltration. The number of leaves exhibiting HR over the total number inoculated is shown. (B) The disease resistance function of RPM1(D505V). Seedlings from
the transgenic lines noted were dip-inoculated with 2.5 x 107 cfu/mL of Pto DC3000(avrRpm1). (C) The effects of RPM1(D505V) on plant basal defense. Same
transgenic lines as in B were dip-inoculated with 2.5 x 107 cfu/mL of PtoDC3000(EV). No significant difference was observed. The constitutive pathogen re-
sponse 5 (cpr5) mutant was used as control for enhanced disease resistance. (D) Line 49 transgene RPM1(D505V)-myc rom1 rps2 plants (Fig. 2E) retain effector-
triggered disease resistance. Inoculations as in B.
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Fig. S3. The full-length RPM1(D505V) protein autoactivates hypersensitive response. Results that rely on detection of C-terminal epitope-tagged RPM1 will be
valid under the important assumption that RPM1 or RPM1(D505V) functions as a full-length protein. However, if a C-terminally truncated RPM1(D505V) is the
activated molecule, then we would not be able to detect this with anti-Myc antibody. To determine whether RPM1(D505V) functions as a full-length protein,
we constructed a conditionally expressed, double epitope-tagged version of RPM1(D505V) called T7-RPM1(D505V)-YFP-HA. We used the N-terminal T7 tag to
detect potential C-terminal truncations and the C-terminal YFP-HA tag to detect potential N-terminal truncations. Importantly, the T7-RPM1(D505V)-YFP-HA
protein retains autoactivity, whereas a control T7-RPM1-YFP-HA is not active following transient expression in N. benthamiana. We did not observe specific
truncated fragments of T7-RPM1(D505V)-YFP-HA during a time course following estradiol induction leading to the onset of cell death, although by 7 h post
induction the activated protein has largely disappeared (B). (A) The autoactivity of T7-RPM1(D505V)-YFP-HA. The protein was transiently expressed in N.
benthamiana (ODgoo = 0.3). Cell death was detected with ion leakage. (B) Protein expression of T7-RPM1(D505V)-YFP-HA over time. The full-length T7-RPM1
(D505V)-YFP-HA (marked as FL) and possible C-terminal truncations were detected with anti-T7 antibody. The full-length T7-RPM1(D505V)-YFP-HA and the
possible N-terminal truncations were detected with anti-GFP antibody. T7-RPM1-YFP-HA was used as a negative control. Protein samples from uninfiltrated
leaves were used as the control of immunoblot.
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Fig. S4. RPM1-Myc-NES has hypersensitive-response (HR) and disease-resistance functions. (A) Expression levels of RPM1-Myc-NES and RPM1-Myc-nes in in-
dependent, nonsegregating T3 transgenic rom1 plants. Transgenic plants were grouped into high (H), medium (M), and low (L) expression categories. (B) The
HR function of RPM1-Myc-NES is retained. The leaves were infiltrated with 5 x 107 cfu/mL of Pto DC3000(avrRpm1) and stained with Trypan blue at 6 h after
infiltration. The number of leaves exhibiting HR over the total number inoculated is shown. (C) The disease-resistance function of RPM1-Myc-NES is retained.
Seedlings were dip-inoculated with 2.5 x 107 cfu/mL of Pto DC3000(avrRpm1).
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Fig. S5. The NES tag is functional and can export nuclear localized NLS-RPM1-GFP out of the nucleus. Because there is no detectable RPM1 signal in the
nucleus (Fig. 3C and Fig. 4), we added an NLS (Materials and Methods) to the N terminus of RPM1-GFP (Est:NLS-RPM1-GFP). This NLS efficiently localized NLS-
RPM1-GFP into the nucleus following transient expression in N. benthamiana (A and B). We further constructed Est:NLS-RPM1-GFP-NES and Est:NLS-RPM1-GFP-
nes and tested whether the NES could efficiently export NLS-RPM1-GFP-NES out of the nucleus. The nuclear localization of NLS-RPM1-GFP-NES was obviously
lower than that of NLS-RPM1-GFP-nes, suggesting that the NES is sufficient to export NLS-RPM1-GFP out of the nucleus. The peri-nuclear accumulation of NLS-
RPM1-GFP-NES is consistent with previous observations (A and B) (1). Importantly, although neither NLS-RPM1-GFP-NES nor NLS-RPM1-GFP-nes were au-
toactive, they did respond to AvrRpm1 and initiate hypersensitive response (HR) in the presence of RIN4 (C and D). (A) The effects of NLS and NES tags on RPM-
1-GFP localization. Constructs of RPM1 noted at left were co-expressed with T7-RIN4 into N. benthamiana leaves (ODggo = 0.5 for RPM1 constructs and ODggo =
0.3 for T7-RIN4). Estradiol (20 pM) was painted onto the leaves at 48 h after agrobacteria infiltration. Confocal imaging began at 8 h after estradiol induction.
The nuclei of the epidermal cells were stained with DAPI at 10 pg/mL. The NLS tag drives some RPM1 into the nucleus, the NES tag can export this protein, and
this export requires a functional NES. (B) Quantification of microscopy results from A. The number of cells that showed GFP signal in the nucleus, a perinuclear
ring, or neither (no/weak) is given. Data are from three independent experiments. (C) NLS-RPM1-GFP-NES and NLS-RPM1-GFP-nes retain effector-triggered HR.
Estradiol-inducible NLS-RPM1-GFP-NES or NLS-RPM1-GFP-nes, T7-RIN4, and Dex-inducible AvrRpm1-HA (ODggo = 0.5, 0.3, and 0.05, respectively) were co-ex-
pressed in N. benthamiana. Transient expression of proteins was induced with 20 pM estradiol and 20 pM Dex at 48 h after agrobacteria infiltration. (D)
Expression level of NLS-RPMGFP-NES and NLS-RPM1-GFP-nes was detected at 5 h after estradiol induction.

1. Shen QH, et al. (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315:1098-1103.
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Fig. S6. CBL-RPM1-Myc has weak autoactivity. (A) The weak autoactivity of CBL-RPM1-Myc. RPM1 constructs controlled under the 35S promoter were
transiently expressed in N. benthamiana with or without co-expression of native promoter T7-RIN4 (ODggo = 0.5 for RPM1 constructs and ODgqo = 0.3 for T7-
RIN4). Cell death was monitored with ion leakage. (B) Protein expression level of RPM1 constructs and RIN4. Samples were collected at 36 h after infiltration.
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