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Receptor kinases with leucine-rich repeat (LRR) extracellular
domains form the largest family of receptors in plants. In the few
cases for which there is mechanistic information, ligand binding in
the extracellular domain often triggers the recruitment of a LRR-
coreceptor kinase. The currentmodel proposes that this recruitment
is mediated by their respective kinase domains. Here, we show that
the extracellular LRR domain of BRI1-ASSOCIATED KINASE1 (BAK1),
a coreceptor involved in the disparate processes of cell surface
steroid signaling and immunity in plants, is critical for its association
with specific ligand-binding LRR-containing receptors. The LRRs of
BAK1 thus serve as a platform for the molecular assembly of signal-
competent receptors. We propose that this mechanism represents
a paradigm for LRR receptor activation in plants.
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Leucine-rich repeat receptor kinases (LRR-RKs) form the
largest family of receptors in plants (1). LRR-RKs bind

a wide range of ligands, including small molecule hormones and
peptides, and are involved in a variety of developmental and
immune signaling processes (2, 3). In Arabidopsis, BAK1 (BRI1-
ASSOCIATED KINASE1) is an LRR coreceptor kinase for
several LRR-RKs, including the brassinosteroid (BR) receptor
BRI1 (BRASSINOSTEROID-INSENSITIVE 1) and the flagel-
lin receptor FLS2 (FLAGELLIN-SENSING 2) that are involved
in growth and immune responses, respectively (3–5). Ligand
perception at the cell surface by either BRI1 or FLS2 induces the
subsequent recruitment of BAK1 to a ligand-bound receptor
complex (6–10). This process triggers transphosphorylation at
multiple serines and threonines of the respective kinase domains
inside the cell (11–13). Perhaps because BRI1 is a long-lived
protein that apparently cycles between the plasma membrane and
endosomes (14), there are multiple mechanisms to maintain the
kinase domain in a basal state. BRI1 kinase is auto-inhibited by its
C-terminal tail (15), by auto-phosphorylation on threonine 872
(11), and by a protein, BRI1 KINASE INHIBITOR 1 (BKI1),
which associates with BRI1’s kinase domain (10, 16). BKI1 in-
hibits BR signaling by binding to the BRI1’s kinase domain,
thereby inhibiting the interaction between BRI1- and BAK1-ki-
nase (10, 16). Upon ligand binding, BRI1 phosphorylates BKI1 on
a tyrosine within its membrane-targeting region, which dissociates
BKI1 from the cell membrane and targets it to the cytoplasm,
where it is inactive (10). Dissociation of BKI1 from BRI1 allows
formation of a stable BRI1-BAK1 complex that is competent to
induce downstream signaling (17).
The interplay between BRI1 and BAK1 kinase domains is fur-

ther regulated by BAK1 autophosphorylation on tyrosine 610 (tyr-
610), which is required to stimulate BRI1 kinase activity in vitro
and for proper BR signaling in vivo (18). Of note, BAK1 tyr-610
phosphorylation is not required for flagellin response and it is
possible that tyr-610 phosphorylation might be involved in the
proper interaction with its cognate receptors. However, tyr-610
mutations affect only BRI1 kinase activation but not its interaction
with BRI1 intracellular domain (18). Therefore, a critical unan-
swered question is how ligand-bound LRR-RKs selectively recruit

BAK1. Here, we report that the LRR domain of BAK1 is required
for its recruitment to a ligand-bound LRR-RK and allows the ki-
nase domains to be in physical contact for subsequent reciprocal
transphosphorylation. Furthermore, our data indicate that the
extracellular domain (ECD) of BAK1 is critical for the high affinity
formation of the correct receptor/coreceptor pair.

Results and Discussion
Gain-of-Function Phenotype of bak1elg Allele in the Brassinosteroid
Pathway. A previously described mutation in BAK1, elg (elon-
gated), was originally identified as a suppressor of the gibberellin
biosynthesis mutant, ga4 (19). The elg mutation results in a sub-
stitution of an aspartic acid to an asparagine (D122N) in the third
LRR of BAK1 (20) (Fig. 1A and Fig. S1). The elg mutant is also
hypersensitive to exogenous BR treatment (20). We found that
both elg and transgenic lines of a null bak1 mutant (bak1-3) (9),
expressing bak1elg fused with mCITRINE, a monomeric yellow
variant ofGFP (bak1elg::CITRINE), had slightly longer hypocotyls
in the dark comparedwith control plants (Fig. 1B and Fig. S1). Cell
elongation in etiolated seedlings is BRI1-dependent (4). Impor-
tantly, in the presence of brassinazole (BRZ), an inhibitor of BR
biosynthesis, both elg and bak1-3 transgenic plants expressing
a bak1elg::CITRINE fusion protein still displayed partially elon-
gated hypocotyls compared with controls (Fig. 1B and Fig. S1).
These phenotypes were not explained by differential protein ac-
cumulation (Fig. 1D). Moreover, when grown in the light, both elg
and the bak1elg::CITRINE-expressing bak1-3 transgenic plants
exhibited long twisted petioles and elongated leaf blades (Fig. 1C
and Fig. S1), and a rosette phenotype reminiscent of plants either
overexpressing BRI1 or treated exogenously with BR (21).
We asked whether bak1elg::CITRINE growth promotion is

BRI1-dependent. We introgressed both bak1elg::CITRINE and a
complementing BAK1::CITRINE transgene into a bri1-null mu-
tant. Both BAK1::CITRINE and bak1elg::CITRINE failed to
induce hypocotyl and petiole elongation in bri1 plants (Fig. 1 B
and C). Finally, we checked the phosphorylation status of the
BRI1-EMS-SUPPRESSOR 1 (BES1) transcription factor in
BAK1::CITRINE and bak1elg::CITRINE expressing bak1-3 trans-
genic plants (Fig. 1E). BES1 phosphorylation is a readout for BR
activity, as phosphorylated BES1 (P-BES1) is a mark of low BR
signaling and dephosphorylated BES1 is indicative of active
BR signaling (22). We found that bak1elg::CITRINE but not
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BAK1::CITRINE plants accumulated dephosphorylated BES1 to
a similar extent as plants overexpressing BRI1. We conclude that
elg acts as a gain-of-function mutation that requires BRI1 to
promote cell elongation.

Impaired Flagellin Signaling of bak1elg. To address the phenotype of
elg and bak1elg::CITRINE plants with respect to innate immune-
response signaling, we monitored various readouts that include
both early and late responses to flg22 (an elicitor peptide from
bacterial flagellin) (3). Expression of BAK1::CITRINE, but not
bak1elg::CITRINE, in the bak1-3 mutant almost completely res-
cued the induction of reactive oxygen species triggered by flg22,
one of the earliest readouts for flagellin signaling (3) (Fig. 2A).
Similarly, BAK1-CITRINE, but not bak1elg::CITRINE, rescued
the bak1 phenotype with respect to loss of fresh weight and callose
deposition triggered by flg22 late readouts of flagellin signaling
(Fig. 2 B and C). The elg mutant was also insensitive to flg22
treatments with respect to loss of fresh weight and callose de-
position (Fig. S1D andE). Additionally, bak1elg::CITRINE bak1-3
plants did not exhibit protection from Pseudomonas syringae pv.
tomato (Pto) DC3000 infection, which is normally induced in wild-
type by cotreatment with flg22 (23) (Fig. 2D). Together, these
results suggest that both early and late responses to flagellin are
impaired by a single amino acid substitution in the ECD of BAK1.
Importantly, bak1elg::CITRINE selectively affected innate immune
responses triggered by various MAMPs (microbe-associated mo-
lecular patterns) (Fig. S2). Together, our results indicate that the
bak1elg protein behaves differently with respect to BR signaling
(gain-of-function) and flagellin responsiveness (loss-of-function).

D122N Substitution in BAK1’s ECD Modifies its Interaction with Both
BRI1 and FLS2 LRR-RKs. Next, we addressed the mechanism by
which the bak1elg protein induces BR signaling and blocks fla-
gellin response. Control experiments showed that bak1elg::CIT-
RINE accumulates to similar levels as BAK1::CITRINE (Fig. 1D)
and had a similar subcellular localization (Fig. S3A). In addition,
the elg mutant had normal accumulation of BRI1 (Fig. S1), and
expression of bak1elg::CITRINE did not alter the accumulation of
BRI1::CITRINE (Fig. 3A) or FLS2::GFP (Fig. 3B). Importantly,
bak1elg::CITRINE did not modify BRI1::mCITRINE or FLS2-
GFP subcellular localization (Fig. S3 B and C). Therefore, we
hypothesized that the phenotypes ascribed to bak1elg in Fig. 1 are
the result of alterations in the interaction between bak1elg and
either BRI1 or FLS2.
Both BAK1::CHERRY and bak1elg::CHERRY coimmuno-

precipitated with BRI1::CITRINE in the absence of the brassi-
nosteroid biosynthesis inhibitor, BRZ (Fig. 3A). In contrast, only
bak1elg::CHERRY coimmunoprecipitated with BRI1::CITRINE
in the presence of BRZ (Fig. 3A). As described previously, flg22
treatment induced the recruitment of wild-type BAK1 to FLS2
(8, 9) (Fig. 3B). However, bak1elg::6xHA did not coimmuno-
precipitate with FLS2::GFP under these conditions (Fig. 3B).
We could immunoprecipitate only a fraction of BAK1 with FLS2
after flg22 treatment; therefore, we cannot exclude the possibility
that BAK1elg can still bind to FLS2, albeit more weakly than
wild-type BAK1. Taken together, our results indicate that the
bak1elg variant interacts with BRI1, even when the BR concen-
tration is very low, whereas its ligand-induced interaction with
FLS2 is impaired. These differences in affinity likely explain the
opposite gain- and loss-of-function phenotypes in BR and fla-
gellin signaling, respectively.

Fig. 1. Gain-of-function phenotype of bak1elg allele for the brassinosteroid
signaling pathway. (A) Schematic representation of BAK1 with its extracel-
lular LRR domain in red and intracellular kinase domain in blue. TM: trans-
membrane segment. The position of the elg (D122N) mutation in BAK1
(LRR3) is indicated. (B) BAK1prom:BAK1::CITRINE expression complements
the bak1-3 hypocotyl growth defect. BAK1prom:bak1elg::CITRINE expression
in bak1-3 leads to an elongated hypocotyl phenotype in the dark that is
BRI1-dependent. Note that BAK1prom:bak1elg::CITRINE-expressing hypo-
cotyls still elongate when BR ligand is partially depleted by 1 μM brassina-
zole, BRZ. Hypocotyl length is in mm ± SD (n = 25), NT/T is the ratio of
nontreated (NT) over BRZ-treated (T) hypocotyl length. (C) Pictures of ro-
sette stage transgenic homozygous Arabidopsis (T3) expressing BAK1prom:
BAK1::CITRINE or BAK1prom:bak1elg::CITRINE under the control of BAK1
promoter in the bak1-3 background. The phenotypes associated with the
overexpression of BRI1 (on the right, for comparison), narrow leaf blades,
elongated and twisting petioles were recapitulated by driving the expres-
sion of the bak1elg::CITRINE variant. Mean value of rosette radius is indicated
in mm ± SD (n = 25). (D) BAK1::CITRINE accumulates to a similar extent as
bak1elg::CITRINE. Microsomal protein extracts were prepared from wild-type
Col-0, BAK1prom:BAK1::CITRINE in bak1-3 and BAK1prom:bak1elg::CITRINE
in bak1-3 plants. These extracts were subjected to an anti-GFP protein im-
munoblot analysis to detect the accumulation of the CITRINE-tagged pro-
teins. Equal loading was ensured by protein quantification before loading
and by Ponceau red staining of the membrane postprotein transfer. (E) BES1

phosphorylation in BAK1::CITRINE/bak1-3, BAK1-bak1elg::CITRINE/bak1-3
and OxBRI1 lines. P-BES is phosphorylated BES1. Equal loading was ensured
by protein quantification before loading and by the signal intensity of a
nonspecific band.
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BAK1 Kinase Activity Is Not Required for bak1elg Association with
BRI1. Previous reports indicated that the isolated kinase domains
of BRI1 and BAK1 interact directly in vitro and in yeast (6, 7, 16,
18). It was therefore unexpected that the bak1elg ECD mutation
modified its interaction with both BRI1 and FLS2. One simple
explanation for this could be that the LRRs of BAK1 interact
directly with LRRs of BRI1 and bak1elg enhances that interaction.
Alternatively, bak1elgmay indirectly activate BAK1 kinase activity,
thus enhancing the binding affinity between the two kinase
domains. To explore these possibilities, we took advantage of the
fact that strong overexpression of kinase-dead BAK1 leads to a
dwarf phenotype because of impaired BR signaling (7). This
phenotype is likely caused by a dominant-negative effect of the
kinase-deadBAK1onBRI1 kinase activity. In contrast, expression
of a BAK1 kinase-dead mutant (D434N) under the control of its
own promoter in wild-type plants did not induce a dwarf pheno-
type, probably because at this lower expression level, bak1D434N is
unable to compete with endogenous BAK1 to inhibit BRI1 activity
(Fig. 4A). We reasoned that if bak1elg activates its own kinase
activity, then a double-mutant bak1elg D434N would suppress any
effect of the elg mutation. Alternatively, if the enhanced bak1elg

interaction with BRI1 is mediated by their respective ECDs, then
bak1elg D434N would bring the catalytically dead BAK1 kinase
domain into proximity with the BRI1 kinase domain potentially
enhancing any intrinsic dominant-negative effect on BRI1 activity,
even at native bak1elg D434N expression levels. In fact, we found
that at similar expression levels, bak1elg D434N::CITRINE but not

bak1D434N::CITRINE resulted in a very strong dominant-negative
phenotype; the plants were compact dwarfs that resembledmild to
strong bri1 mutants (Fig. 4 A and B and Fig. S4). These results
suggest that BAK1 is likely to interact with BRI1 through both its
extracellular LRR domain, as well as its intracellular kinase do-
main, and that the bak1elg mutation enhances this interaction.

BRI1 Receptor Complex Formation Involves a “Double-Lock” Mecha-
nism. In conclusion, our study has identified a key role for the
LRR ECD of the coreceptor BAK1 during recruitment to its
receptors, BRI1 and FLS2. We propose a scenario in which LRR-
containing coreceptors are recruited to their activated receptors

Fig. 2. bak1elg has impaired flagellin response. (A) Oxidative burst trig-
gered by 100 nM flg22 in wild-type Col-0 (blue), fls2 (red), bak1-3 (green),
BAK1prom:BAK1::CITRINE in bak1-3 (purple), and BAK1prom:bak1elg::CIT-
RINE in bak1-3 (orange) leaf discs measured in relative light units (RLU).
Result are mean ± SD (n = 24). (B) Average fresh-weight ratio of 14-d-old
seedlings grown for 7 d in either water or water plus 1 μM flg22. The bar
graph represents the average fresh-weight ratio from wild-type Col-0, bak1-
3 mutant, BAK1prom:BAK1::CITRINE in bak1-3, and BAK1prom:bak1elg::
CITRINE in bak1-3. Means and SDs were calculated from 48 seedlings (six
random pools of eight seedlings). (C) Callose deposits stained with aniline
blue from leaves of wild type Col-0, bak1-3, BAK1prom:BAK1::CITRINE in
bak1-3 and BAK1prom:bak1elg::CITRINE in bak1-3 treated with 1 μM flg22.
The number of leaves showing the displayed features over the total in
a given genotype is indicated in parentheses. (D) Growth of Pseudomonas
syringae pv. tomato (Pto DC3000) was measured on the genetic backgrounds
indicated at bottom. Leaves from 4-wk-old plants were infiltrated with
a bacterial inoculum of 105 cfu·mL−1 in the presence (orange) or absence
(red) of 1 μM flg22 peptide. The number of bacteria per square centimeter
of leaf was plotted on a log10 scale. Error bars represent two times the SE
among four internal replicate samples from one of three experiments.

Fig. 3. A mutation in the extracellular LRR domain of BAK1 modifies its
interaction with BRI1 and FLS2. (A) Transgenic Arabidopsis plants expressing
either BAK1prom:BAK1::CHERRY or BAK1prom:bak1elg::CHERRY alone or
with BRI1prom:BRI1::CITRINE were grown with or without the BR bio-
synthesis inhibitor BRZ (5 μM added from sowing of seeds). Total membrane
protein was immunoprecipitated (IP) with anti-GFP antibodies and subjected
to immunoblot (IB) analysis, as indicated. (B) Transgenic plants expressing
either BAK1prom:BAK1::6xHA or BAK1prom:bak1elg::6xHA alone or with
FLS2prom:FLS2::GFP were grown on 1/2 LS media and treated 5 min before
protein extraction with 10 μM flg22. Total membrane protein was immu-
noprecipitated (IP) with anti-GFP antibodies and subjected to immunoblot
(IB) analysis as indicated.
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by their ECDs, bringing the receptor and coreceptor together and
thus facilitating subsequent conformational changes and trans-
phosphorylation of their kinase domains. Our finding that a single
substitution in the third LRR of BAK1-ECD leads to a modifica-
tion in its binding to both BRI1 and FLS2, with opposite pheno-
typic consequences, suggests that specific interactions between
the ECDs are critical for the formation of the correct receptor/
coreceptor pair. It is unlikely that bak1elg hyperactivates the BR
pathway by mass action because of its impaired interaction with
FLS2. Indeed, BAK1 association with pattern recognition recep-
tors is MAMP-dependent, but bak1elg ectopically associates with
BRI1 in the absence of MAMPs. As such, our data further suggest
a fine-tuning between BR and MAMP signaling, where BAK1’s
affinity for the relevant receptors provides the cellular decision
between elongation or defense. The third LRR of BAK1 plays a
critical role in this decision as this region is involved in interaction
with both BRI1 and FLS2.
The interaction between the activated BRI1 and BAK1 kinase

domains is also critical, because a kinase-dead BRI1 does not
interact with BAK1 in planta (12). Notably, we found that bak1elg

cannot reverse the phenotype induced by overexpression of BRI1
KINASE INHIBITOR1 (BKI1) (Fig. 4C), an inhibitory protein
that prevents the interaction between BRI1 and BAK1 kinase
domains (10). Therefore, we propose that receptor/coreceptor
heterodimerization is regulated by a double-lock mechanism, in
which both the ECDs and the kinase domains participate and
which is a critical step for full receptor activation and downstream
signaling (Fig. 4D). This strategy would provide room for multiple
levels of regulation, coming both from outside and within the cell,
in the form of noncell autonomous signals (e.g., ligand) and cell-
autonomous regulators [e.g., inhibitory proteins like BKI1 (10)].
This double-lock mechanism would ensure both specificity and
robustness in receptor complex formation and might represent
a paradigm for LRR-RK activation. Of note, similar but not
identical, strategies are used during activation of receptor tyrosine
kinases (RTKs) in metazoans. Indeed, the ECDs of RTKs, such as
the EGF receptor or the stem-cell factor receptor (KIT) homodi-
merize following ligand perception, which brings the kinases in the
right orientation for trans-phosphorylation (24). In plants, the
system is somewhat different in that receptor activation does not
require ligand-induced homodimerization but heterodimeriza-
tion with a coreceptor (3, 21). Because these coreceptors do not
directly bind ligands, they are extremely labile and can be
recruited to a variety of receptors. This invention allows one
coreceptor, such as BAK1, to promote cell growth and innate
immunity and, therefore, to be at a critical decision node as a
plant determines to use resources to defend itself against micro-
organisms or to grow toward new resources[e.g., light, water,
nutrients (25)]. Future challenges will be to understand the mo-
lecular basis of the recognition between receptor and coreceptor
to better our understanding of signaling crosstalk.

Experimental Procedures
Plant Material and Growth Conditions. The wild-type used in all experiments
was A. thaliana accession Columbia (Col-0) (except in Fig. S1, in which the
wild-type control was accession Landsberg erecta, Ler). Plants were grown
on either soil or Petri dishes containing 0.5× Linsmaier and Skoog medium
(Caisson Laboratories) in long-day light conditions (16 h light/8 h dark). For
bacterial assays, plants were grown in short-day conditions (8 h light/16 h
dark). The mutants used in this study are the null bak1-3 (9), the null bri1
allele GABI_134E10, and the null fls2 allele SALK_026801c. The insertion sites
of the two T-DNA lines (GABI_134E10 and SALK_026801c) were located in
the first exon of BRI1 and FLS2, respectively. The homozygous mutations of
BRI1 and FLS2 and the sequence of the insertion site were confirmed by PCR
and sequencing. The bri1 mutant was confirmed to be a null allele by
Western blot using native anti-BRI1 polyclonal antibody against the C ter-
minus of BRI1 (26). The functional FLS2prom:FLS2::GFP in the Col-0 back-
ground is a gift from Silke Robatzek (The Sainsbury Laboratory, Norwich,
UK) (9).

Fig. 4. BRI1 is activated by a double-lock mechanism. (A) Rosette leaf phe-
notype of wild-type Col-0, BAK1prom:BAK1::CITRINE, BAK1prom:bak1D434N::
CITRINE, BAK1prom:bak1elg::CITRINE, and BAK1prom:bak1elg D434N::CITRINE.
Average rosette radius in mm ± SD (n = 25). (B) Expression level of transgenic
proteins. (C) Rosette leaf phenotype of wild-type Col-0, BAK1prom:bak1elg::
CITRINE, OxBKI1 and a cross between BAK1prom:bak1elg::CITRINE and
OxBKI1 grown in short days. (D) Model for the formation of an active BR
signaling complex. In the absence of ligand, BRI1 is maintained in an inac-
tive state by its C-terminal tail as well as its inhibitory protein BKI1 and does
not interact with BAK1 (Upper). Activation of BRI1 by BR triggers both the
recruitment of BAK1 through its extracellular LRR domain as well as the
BRI1-mediated phosphorylation of BKI1 inside the cell (Lower Left). This
triggers dissociation of BKI1 from the plasma membrane and trans-
phosphorylation between BRI1 and BAK1 kinase domain and leads to full
activation of the receptor complex (Lower Right). BRI1 is represented as
a monomer for simplicity but its isolated intracellular domain exist only as
homodimers in solution (10) and 20% of the full-length receptor forms
homodimers in vivo (30).
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Confocal Microscopy, Hormone, and Inhibitor Treatments. Microscopy and
drug treatments were performed as described previously (27). Confocal
microscopy was performed with a Leica SP/2 inverted microscope and image
analysis was done as described previously (28). BRZ (Chemiclones; 10 mM
stock in DMSO) was used at the indicated concentration and was supple-
mented into the agar medium from the onset of germination.

Protein Extraction from Plants and Immunoprecipitation. Monoclonal anti-GFP
HRP-coupled (Miltenyi Biotech), anti-HA-HRP coupled (Miltenyi Biotech), anti-
ACTIN (clone C4; MP Biomedicals), and polyclonal anti-CHERRY (DsRed
polyclonal; Clontech) were used at 1:5,000. Polyclonal anti-BRI1 [raised
against BRI1 C terminus in rabbit) (26)] was used at 1:1,000. Flg22 treatment
before protein extraction was done in liquid medium (0.5× Linsmaier and
Skoog medium) for 5 min under vacuum. The immunoprecipitaiton extrac-
tion buffer was supplemented with 10 μM flg22; the mock condition cor-
responds to addition of the same volume of water. Similarly, BRZ was
supplied in the immunoprecipitation extraction buffer at a concentration of
5 μM in the BRZ-treated condition; the mock condition corresponds to the
addition of the same volume of DMSO (BRZ solvent). All immunoprecipita-
tions were performed as previously described (28). Approximately 100 mg of
14-d-old light-grown seedlings were harvested for Western blot experi-
ments. Immunoprecipitation experiments required from 1 to 3 g of seedlings
(14-d-old). Tissues were ground at 4 °C in a 15-mL tube containing 2-mL of
ice-cold sucrose buffer [20 mM Tris, pH 8; 0.33M Sucrose; 1 mM EDTA, pH 8;
protease inhibitor (Roche)] using a polytron (Brinkman). Samples were
centrifuged for 10 min at 5,000 × g at 4 °C or until the supernatants were
clear. This total protein fractions were centrifuged at 4 °C for 45 min at
20,000 × g to pellet microsomes. The pellet was resuspended in 1 mL of
immunoprecipitation buffer (50 mM Tris pH 8, 150 mM NaCl, 1% Triton X-
100) using a 2-mL potter-Elvehjem homogenizer (Wheaton) and left on
a rotating wheel for 30 min at 4 °C. Samples were then pelleted for 10 min at
20,000 × g and 4 °C. The supernatant corresponded to the fraction enriched
in microsomal associated proteins. The proteins were quantified and
immunoprecipitates were performed on 1 mg of microsomal proteins. Each
experiment was repeated at least three times and showed consistent results.

MAMP Response Assays. Flg22 (QRLSTGSRINSAKDDAAGLQIA) and elf18
(acetyl-MSKEKFERTKPHVNVGTI) peptideswere synthesized at>95%purity by
ezbiolab and dissolved to a 10-mM stock in water. A pectidoglycan (Sigma-
Aldrich) stock solution was prepared at 10 mg/mL in water. A 10mg/mL chitin
from shrimp shell (Sigma-Aldrich) stock solution was prepared as follows.
Chitin powder was suspended in sterile PBS and sonicated at 25% output

power three times for 5 min with a sonicator. The suspension was then fil-
tered with 100-, 70-, and 40-μm sterile cell strainers. Following centrifuga-
tion (2,800 × g, 10 min), chitin fragments from the 40- to 70-μm fraction
were suspended in the desired volume of sterile PBS and autoclaved. Oxi-
dative burst assays were performed as described previously (9, 23), except
that luminescence was measured using a Tecan Saphire plate reader. Loss of
fresh-weight ratio was calculated on 14-d-old seedlings grown for 7 d in
either water or 1 μM flg22 (n = 48, six random pools of eight seedlings). For
callose deposition assays, 14-d-old plants were completely submerged in
individual 0.5-mL Eppendorf tube containing the elicitor at the indicated
concentration. A vacuumwas applied for 15 min and plants remained in the
elicitor solution for another 16 h. Next, seedlingswere fixed in a 3:1 ethanol:
acetic acid solution for several hours. Seedlings were rehydrated in 70%
ethanol for 2 h, 50% ethanol for an additional 2 h, and then with water
overnight. Seedlings were then incubated in 150 mM K2HPO4, pH 9.5, and
0.01%Aniline blue (Sigma-Aldrich) for several hours. Individual leaves were
mounted on slides in 50% glycerol, and callose was observed immediately
using a Leica DM5000B under UV (excitation, 390 nm; emission, 460 nm).
Bacterial assays were performed as described earlier (23, 29) except that
bacterial count were assayed at 3 d postinfection. Each experiment was
repeated at least three times and showed consistent results.
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SI Experimental Procedures
Constructs, Generation of Transgenic Lines, and Phenotype Analysis.
The mCITRINE-tagged lines are resistant to glufosinate (Basta),
6xHA-tagged lines to kanamycin, andmCHERRY-tagged lines to
hygromycin. Rosette radius phenotypes were quantified on 5-
wk-old plants. UBQ10prom was PCR amplified from pNIGEL
(1) (gift from N. Geldner, University of Lausanne), 35Sprom
from pBJ36 (gift from J. Long, Salk Institute, La Jolla, CA),
BRI1prom (1.7 kb), BAK1prom (1.7 kb) from Col-0 genomic
DNA, and cloned into pDONR-P4P1R using the gateway re-
combination system (Invitrogen) (see Table S1 for primers).
BRI1, BAK1, and BKI1 were PCR-amplified from Col-0 genomic
DNA and recombined into pDONR221 (Invitrogen). Mono-
meric CHERRY (2), monomeric CITRINE (3) (gifts from R.
Tsien, University of California San Diego), and 6xHA (pBJ36,
gift from J. Long, Salk Institute) were cloned into pDONR-

P2RP3 (Invitrogen). Site-directed mutagenesis was carried out
following the site-directed mutagenesis protocol from Agilent
Technology (formerly Stratagene) using the primers listed in
Table S1. Final destination vectors were obtained by using
a three-fragment recombination system using the pB7m34GW,
pH7m34GW, and pK734GW destination vectors (4). The con-
structs created are listed in Table S2. BRI1 and BAK1 constructs
were transformed into heterozygous bri1 (GABI_134E10) and
homozygous bak1-3, respectively, and their transgenic expression
fully rescued the bri1−/− and bak1−/− growth defects. For all
constructs, more than 20 independent T1 lines were isolated and
between three and eight representative monoinsertion lines were
selected in the T2 generation. Confocal microscopy, phenotypic
analysis and protein extraction were performed on segregating
T2 and homozygous T3 lines.
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WT   elg

Fig. S1. Phenotype characterization of the bak1 mutant allele elongated. The elongated (elg) mutant was initially identified as a suppressor of the GA
biosynthetic mutant ga4 by a forward genetic screen (1, 2). This mutant was shown to display a robust enhancement of high-light phototropism compared with
wild-type plants but retained a normal very low light response (2). (A) elg was mapped to the extracellular domain of BAK1. elg is a D122N missense mutation
in the extracellular leucine-rich receptor (LRR) domain of BAK1 (2). (Upper) The alignment between the Arabidopsis thaliana BAK1 (also known as SERK3 for
SOMATIC EMBRYOGENESIS RECEPTOR KINASE3) and its paralogs in A. thaliana (AtSERK1 to AtSERK5) as well as its orthologs in various plant species. Note that
D122 is conserved in all BAK1 paralogs and orthologs, suggesting functional importance. (Lower) A schematic representation of BAK1 architecture. LRRNT: LRR
N-terminal domain, LRRCT: LRR C-terminal domain (note that this domain is present in SERK1, 2 and 5 but not in BAK1/SERK3 and SERK4, where it is replaced
by a proline-rich region), TM: transmembrane region. The sequence alignment was performed as follows: each sequence was run through the pfam program
(pfam.sanger.ac.uk/) to determine the position of the LRRNT and through the TMHMM program (http://www.cbs.dtu.dk/services/TMHMM/) to determine the
position of the transmembrane segment. The sequence between the LRRNT and the TM (LRR domain + LRRCT/proline-rich domain) were then aligned using
tcoffee (http://www.tcoffee.org/). The position of the point mutant used in this study are indicated: ELG = D122N (red) and we used the canonical Asp-to-Asn
kinase-dead mutation (D434N; blue). We found that mutant protein to be more stable both in vivo and in vitro than the previously used K317E kinase dead
mutation. AtSERK1, At1g71830; AtSERK2, At1g34830; AtSERK3/BAK1, At4g33430; AtSERK4, At2g13790; AtSERK5, At2g13800; MtSERK3, Medicago truncatula
ADO15298.1; VvSERK3, Vinis vinifera CBI20070.3; ZmSERK3 Zea mays CAC37642.1. (B) elg mutants display phenotypes consistent with plants treated with
brassinosteroids or plants overexpressing BRI1. Representative pictures of 10-d-old seedlings (Top) and rosette stage (Middle) Arabidopsis plants grown under
identical conditions are shown. The gain-of-function phenotypes of elg plants are not due to the overaccumulation of BRI1. Microsomal protein extracts
prepared from accession Ler (Landsberg erecta) and isogenic elg plants were subjected to an anti-BRI1 protein immunoblot analysis. Equal loading was ensured
by protein quantification before loading and by Ponceau red staining of the membrane postprotein transfer. (C) elg dark-grown seedlings are resistant to
brassinazole (BRZ), an inhibitor of BR biosynthesis. Morphology of 4-d-old dark-grown seedlings of wild-type Ler and elg grown on half-strength MS medium in
the absence (−) or presence (+) of 2 μM brassinazole (BRZ) (Upper). Length of 4-d-old dark-grown seedlings in the absence (white bars) or presence (black bars)
of 2 μM brassinazole (BRZ). Means and SDs were calculated from ∼40 seedlings (Lower). The ratio of the average hypocotyl length of nontreated (NT) to
treated (T) seedlings is indicated at the bottom. (D) Average fresh-weight ratio of 14-d-old seedlings grown for 7 d in either water or 1 μM flg22 (Left). The red
bar represents the average fresh-weight ratio from wild-type Ler and isogenic elg seedlings. Means and SDs were calculated from ∼48 seedlings (six random
pools of eight seedlings). (E) Callose deposition was stained with aniline blue in the leaves of wild-type accession Ler and elg seedlings treated with water or
1 μM flg22 (Right). The fraction of leaf showing the displayed features is given in parenthesis. Because elg is in Landsberg erecta background and our reference
accession is Columbia-0, we took a transgenic approach and expressed BAK1 and bak1elg (tagged with the monomeric fluorescent protein CITRINE) in a bak1-3
mutant (Col-0 background). The rest of the mutant phenotype characterization was carried out with those lines.

1. Halliday K, Devlin PF, Whitelam GC, Hanhart C, Koornneef M (1996) The ELONGATED gene of Arabidopsis acts independently of light and gibberellins in the control of elongation
growth. Plant J 9:305–312.

2. Whippo CW, Hangarter RP (2005) A brassinosteroid-hypersensitive mutant of BAK1 indicates that a convergence of photomorphogenic and hormonal signaling modulates
phototropism. Plant Physiol 139:448–457.
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Fig. S2. bak1elg selectively eliminates flg22- and peptidoglycan- (PGN) but not elf18-induced callose deposition. The first line of active defense relies on the
recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) (1). Among these responses to MAMPs, some are BAK1-
dependent and others are BAK1-independent. To test whether bak1elg affects only flg22 response, all aspect of BAK1-dependent immunity or MAMP-triggered
Immunity (MTI) in general, we tested several MAMPs known to be either BAK1-dependent or -independent. In Brassicacae, a peptide corresponding to the N-
acetylated N-terminal 18 amino acids of bacterial EF-Tu (elf18) is recognized by a receptor called EFR (for EF-Tu Receptor) and triggers MAMP-triggered
Immunity (1). Like FLS2, EFR function is partially dependent on BAK1 (2). PGNs are a major cell-wall component of Gram-positive bacteria and are recognized as
a MAMP in Arabidopsis. The receptor for PGNs is unknown but this response is BAK1-dependent (1). Finally, chitin, an important component of the cell wall of
fungi, is also recognized as a MAMP in Arabidopsis. Interestingly, the plant chitin receptor RLK1/CERK1 is a LysM receptor-like Kinase and do not have LRR in its
extracellular domain (3, 4). This finding is consistent with the observation that chitin response is BAK1-independent. Callose deposits were stained with aniline
blue in the leaves of wild-type Col-0, bak1-3, BAK1prom:BAK1::CITRINE in bak1-3, BAK1prom:bak1elg::CITRINE in bak1-3 seedlings treated with 1 μM flg22,
1 μM elf18, 100 μg/mL of PGNs, or 100 μg/mL of chitin for 16 h. The fraction of leaf showing the displayed features is shown in parenthesis. Note that elf18-
induced callose deposition was extremely robust in wild-type Col-0 and was not completely abolished in about half of bak1-3 plant analyzed. We saw this
partial response when looking at well-emerged true leaves but not cotyledons. In contrast, PGNs and chitin-induced callose deposition was not observed in all
of the wild-type Col-0 leaves observed. Nevertheless, the PGN- but not chitin-induced callose deposition was clearly reduced in bak1-3 and BAK1prom:bak1elg::
CITRINE in bak1-3. These results indicate that bak1elg selectively affected innate immune responses triggered by various MAMPs, it behaves as a loss-of-function
with respect to flg22/FLS2 and PNG responses, but it is neutral for elf18/EFR function.

1. Boller T, Felix G (2009) A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:
379–406.

2. Chinchilla D, et al. (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500.
3. Iizasa E, Mitsutomi M, Nagano Y (2010) Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. J Biol Chem 285:2996–3004.
4. Petutschnig EK, Jones AME, Serazetdinova L, Lipka U, Lipka V (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and

subject to chitin-induced phosphorylation. J Biol Chem 285:28902–28911.
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Fig. S3. Subcellular localization of the different BAK1 mutants and effect of bak1elg on BRI1/FLS2 subcellular localization. (A) Representative confocal pictures
of the cotyledon of BAK1prom:BAK1::CITRINE, BAK1prom:bak1elg::CITRINE, BAK1prom:bak1D434N::CITRINE, and BAK1prom:bak1elg D434N::CITRINE T3 homo-
zygous lines. Identical confocal settings were used for each of the picture shown. (B) Representative confocal pictures of cotyledon of BRI1prom:BRI1::CITRINE
in BAK1prom:BAK1::6xHA and BAK1prom:bak1elg::6xHA expressing lines, respectively. The same confocal settings were used for both pictures. (C) Repre-
sentative confocal pictures of cotyledon of FLS2prom:FLS2::GFP in BAK1prom:BAK1::6xHA and BAK1prom:bak1elg::6xHA expressing lines, respectively. The
same confocal settings were used for both pictures. (Scale bars, 20 μm.)

Wild type Dwarf Severe dwarf

BAK1prom:BAK1D434N

::CITRINE

BAK1prom:bak1elg D434N

::CITRINE

189

116

16 0

61 24

T1

Fig. S4. Quantification of T1 phenotype of BAK1prom:bak1D424N::CITRINE and BAK1prom:bak1elg D434N::CITRINE. Because some bak1elg D434N::CITRINE ex-
pressing T1 plants had a very strong bri1-like phenotype and could not set seeds, and some bak1D434N::CITRINE T1 lines showed a mild phenotype, we decided
to score the phenotype of individual T1 plants. We divided these phenotypes into three different categories: no obvious phenotypes (wild-type), dwarf, and
severe dwarves (plants in the severe dwarf category had a phenotype similar to a strong bri1 and could not set seeds). We found no BAK1prom:bak1D434N::
CITRINE plant in the severe dwarf category; 12% of BAK1prom:bak1elgD434N::CITRINE T1 plants (24 out of 201) were ranked in that category. Furthermore, only
8% of BAK1prom:bak1D434N::CITRINE T1 plants (16 of 205) showed a dwarf phenotype against 30% of BAK1prom:bak1elg D434N::CITRINE T1 plants (60 of 201).
Next, we selected plants in T2 that harbored similar expression level. At similar expression, BAK1prom:bak1elg D434N::CITRINE plants showed already a strong
phenotype but BAK1prom:bak1D434N::CITRINE were indistinguishable from wild-type (see Fig. 4A of the main text).
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Table S2. Constructs list

Construct name Binary Vector Resistance in plant

BAK1prom::BAK1-mCITRINE (BAK1::CITRINE) pB7m34GW Basta
BAK1prom::BAK1-mCHERRY (BAK1::CHERRY) pH7m34GW Hygromycin
BAK1prom::BAK1-6xHA (BAK1::6xHA) pK7m34GW Kanamycin
BAK1prom::BAK1D122N-mCITRINE (bak1elg::CITRINE) pB7m34GW Basta
BAK1prom::BAK1D122N-mCHERRY (bak1elg::CHERRY) pH7m34GW Hygromycin
BAK1prom::BAK1D122N-6xHA (bak1elg::6xHA) pK7m34GW Kanamycin
BAK1prom::BAK1D434N-mCITRINE (bak1D434N::CITRINE) pB7m34GW Basta
BAK1prom::BAK1D122N-D434N-mCITRINE (bak1elg D434N::CITRINE) pB7m34GW Basta
BRI1prom::BRI1-mCITRINE pB7m34GW Basta
35Sprom::BRI1-CITRINE (OxBRI1) pB7m34GW Basta
UBI10prom::BKI1-mCHERRY (OxBKI1) pH7m34GW Hygromycin

Table S1. Primer list

Primer name Sequence

UBQ10prom-B4 GGGGACAACTTTGTATAGAAAAGTTGCTAGTCTAGCTCAACAGAGC
UBQ10prom-B1R GGGGACTGCTTTTTTGTACAAACTTGCCTGTTAATCAGAAAAACT
35Sprom-B4 GGGGACAACTTTGTATAGAAAAGTTGCTCGCGGCCAACATGGTGGA
35Sprom-B1R GGGGACAACTTTGTATAGAAAAGTTGCTCGCGGCCAACATGGTGGA
BRI1prom-B4 GGGGACAACTTTGTATAGAAAAGTTGCTGATCTTCCTTCTTTATTTG
BRI1prom-B1R GGGGACTGCTTTTTTGTACAAACTTGCTTCTCAAGAGTTTGTGAG
BAK1prom-B4 GGGGACAACTTTGTATAGAAAAGTTGCTTGTTTTTTGGAAACAGAG
BAK1prom-B1R GGGGACTGCTTTTTTGTACAAACTTGCTTTATCCTCAAGAGATTA
BRI1-B1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACCATGAAGACTTTTTCAAGCTTCTTTC
BRI1noSTOP-B2 GGGGACCACTTTGTACAAGAAAGCTGGGTATAATTTTCCTTCAGGAAC
BAK1-B1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACCATGGAACGAAGATTAATGATCCC
BAK1noSTOP-B2 GGGGACCACTTTGTACAAGAAAGCTGGGTATCTTGGACCCGAGGGGTATT
BKI1-B1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAACTAATCTACAACAG
BKI1noSTOP-B2 GGGGACCACTTTGTACAAGAAAGCTGGGTATCAAGAATCCTTAACCTT
6HA-B2R GGGGACAGCTTTCTTGTACAAAGTGGCTCCTGCTGCTGCTGCTGCT
6HA-B3 GGGGACAACTTTGTATAATAAAGTTGCTCAAGCGTAATCTGGAACGTCATATGGATAGG
mCITRINE-B2R GGGGACAGCTTTCTTGTACAAAGTGGCTATGGTGAGCAAGGGCGAG
mCITRINE-B3 GGGGACAACTTTGTATAATAAAGTTGCTTACTTGTACAGCTCGTCCATGCCG
mCHERRY-B2R GGGGACAGCTTTCTTGTACAAAGTGGCTATGGTGAGCAAGGGCGAG
mCHERRY-B3 GGGGACAACTTTGTATAATAAAGTTGCTTACTTGTACAGCTCGTCCATGCCGCCGGTGGA
BAK1-D122N-F CTGACGGAATTGGTGAGCTTGAATCTTTACTTGAACAATTTAAG
BAK1-D122N-R CTTAAATTGTTCAAGTAAAGATTCAAGCTCACCAATTCCGTCAG
BAK1-D434N-F TTGAAGCCGTGGTTGGGAATTTTGGACTTGCAAAAC
BAK1-D434N-R GTTTTGCAAGTCCAAAATTCCCAACCACGGCTTCAA
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