
Tradict enables accurate prediction of eukaryotic transcriptional states 1"
from 100 marker genes 2"

Supplemental Information 3"
 4"

Surojit Biswas, Konstantin Kerner, Paulo José Pereira Lima Teixeira, Jeffery L. Dangl, Vladimir 5"
Jojic, Philip A. Wigge 6"

Supplemental Analysis 1 - Our training transcriptomes are reflective of biology and are of 7"
high technical quality 8"

We manually annotated metadata for 1,626 (62.6%, A. thaliana) and 6,682 (32.1%, M. 9"
musculus) of the training transcriptomes for both organisms, and found that the major drivers of 10"
variation were tissue and developmental stage (Figure 1a-b, main text). The first three principal 11"
components of our training collection explained a substantial proportion of expression variation 12"
for each organism (43.1% A. thaliana, 39.3% M. musculus). For A. thaliana PC1 was primarily 13"
aligned with the physical axis of the plant, with above ground, photosynthetic tissues having 14"
lower PC1 scores and below ground, root tissues having higher PC1 scores. Interestingly, 15"
samples found intermediate to the major below- and above-ground tissue clusters consisted of 16"
seedlings grown in constant darkness or mutant seedlings (e.g. det1, pif, phy) compromised for 17"
photomorphogenesis. Thus, PC1 can also be considered to align with light perception and 18"
signaling. By contrast, PC2 represented a developmental axis, with more embryonic tissues 19"
(seeds, endosperms) having lower PC2 scores, and more developed tissues having higher PC2 20"
scores (Figure 1a, main text). 21"
 22"

 23"
Figure S1. The eukaryotic transcriptome is compressible. The transcriptome is of low dimensionality, with 100 24"
principal components able to explain 80% or more of expression variation. Dotted lines illustrate cumulative 25"
expression variation explained on a null model realization, where each gene’s expression vector was permuted to 26"
break correlative ties to other genes. 27"
 28"

For M. musculus, PC1 described a hematopoetic-nervous system axis. Cardiovascular, 29"
digestive, respiratory, urinary and connective tissues were found intermediate along this axis, 30"
and with the exception of liver tissue, were not differentiable along the first three PCs. 31"
Interestingly, as observed for A. thaliana, PC2 represented a developmental axis, with general 32"
“stemness” decreasing with increasing PC2 score. Consistent with this trend, nervous tissue 33"

from embryos and postnatal mice had consistently lower PC2 scores than mature nervous 34"
tissue. We did not find any significant correlation between Xist expression and any of the top 35"
twenty PCs, suggesting that sex was not a major driver of global gene expression relative to 36"
tissue and developmental context. This is consistent with findings reported in Crowley et al. 37"
(2015)1. 38"

To understand the compressibility of our training transcriptome collection beyond the first 39"
three PCs, we examined the percent of expression variation explained by subsequent 40"
components. Strikingly, we found the first 100 principal components were sufficient to explain 41"
86.6% and 81.4% of expression variation in the observed transcriptomes for A. thaliana and M. 42"
musculus, respectively. By contrast, the first 100 principal components of a null model 43"
realization, in which the expression vectors for each gene were independently permuted, could 44"
only explain 5-10% of expression variation for both organisms (Figure S1). Given the 45"
phylogenetic distance spanned by A. thaliana and M. musculus, this transcriptomic 46"
compressibility is likely a shared property of all eukaryotes. 47"

 48"

 49"
Figure S2. Our training collection is of high technical quality. Two dimensional principal components analysis for 50"
a) A. thaliana and b) M. musculus, where each sample is colored by the submission it belongs to. Note that while 51"
multiple submissions may have similar colors, each expression cluster contains many submissions. Bold, black ovals 52"
in the bottom left of each plot illustrate two standard deviation covariances for the median variance submission. c) 53"
Expression of late and early elements of the A. thaliana circadian clock matches expectations. Scatter plots of LHY, 54"
CCA1, and ELF3 expression across all observed transcriptomes. LHY and CCA1 expression is activated by TOC1. 55"
CCA1 and LHY protein inhibits TOC1 and ELF3 transcription. 56"
 57"

To further assess the quality and representativeness of our training collection, we 58"
examined the distribution of SRA submissions across the expression space, compared inter-59"
submission variability within and between tissues, inspected expression correlations among 60"

genes with well established regulatory relationships, and assessed the evolution of the 61"
expression space across time. Technical variation due to differences in laboratory procedures 62"
across labs is difficult assess since this requires two different labs to perform the same, 63"
equivalently aimed experiment. Nevertheless, for both organisms, each tissue or development 64"
specific cluster was supported by multiple submissions, and importantly, inter-submission 65"
variability within a tissue or developmental context was significantly smaller than inter-66"
tissue/developmental stage variability (p-value = 1.23e-16, F-test; Figures S2a-b). We also 67"
compared the expression of ELF3, LHY, and TOC1 -- early and late elements of the A. thaliana 68"
circadian clock -- and found strong correlation in their expression with a direction and magnitude 69"
that fit established expectations (Figure S2c)2. 70"

We next performed a temporal rarefaction analysis. We compared (measured by 71"
Pearson correlation) how past distributions of samples along each of the first 100 principal 72"
components compared to their present distribution. Figures S3a-b illustrate that the expression 73"
space stabilized 2-3 years ago, and that new transcriptome samples that are added to the SRA 74"
tend to fall within already established clusters. We further note that the amount of usable 75"
transcriptomic data deposited on the SRA, and hence the representativeness of our sample, is 76"
increasing exponentially (Figure S4). 77"

 78"

 79"
Figure S3. The expression space has stabilized. For each of the first 100 principal components (PCs), depicted is 80"
the Pearson correlation between how samples were distributed along the PC at a select point in the past and how 81"
they are distributed currently. Each line, representing a PC, is shaded by the percent variance explained by that PC. 82"
a) A. thaliana. b) M. musculus. 83"

"84"
Figure S4. The number of high quality transcriptomes deposited in the SRA is growing exponentially. SRA 85"
growth for a) A. thaliana, and b) M. musculus. 86"

"87"

 88"
Figure S5. Tradict outperforms leading methods and is robust to noise. Tradict was trained on the first 89"
(historically speaking) 90% of SRA submissions and then tasked with predicting the remaining 10% of “test-set” 90"
submissions. a) Average intra-submission Pearson correlation coefficients between predicted and actual expression 91"
of genes (left) and transcriptional programs (tr. programs; right) in the test-set as a function of the number of markers 92"
used in the model. b) Intra-submission prediction accuracy of gene expression on the same test-set processed 93"
normally or rarefied to 0.1x depth. ‘Tradict no nc’ uses the same algorithm as Tradict, however, a diagonal covariance 94"
is used over markers, instead of a full one.!95"
 96"
Supplemental Analysis 2 - Tradict outperforms leading approaches and is robust to 97"
noise from low sequencing depth and/or corrupted marker measurements 98"

Baseline descriptions: As baselines for Tradict, we considered three alternative 99"
approaches. The first two, locally weighted averaging (LWA) and structured regression (SR) are 100"
the two best performing methods used in Donner et al. (2012)3. LWA, a non-parametric and 101"
non-linear approach, formulates predictions as weighted averages of the entire training set, 102"
where weights are determined by the distance between a query set of marker expressions and 103"
the expression of those markers in a training transcriptome. The exact weighting function is 104"
given by a Gaussian kernel, whose bandwidth we learn through cross-validation. This method is 105"
conceptually similar to nearest-neighbor based imputation methods in that predictions of gene 106"
expression come in the form of weighted averages of neighbor transcriptomes. In Donner et al. 107"
(2012), LWA performed superiorly to a simple nearest neighbor approach. In contrast, SR 108"
selects markers and predicts expression using regularized regression and the L0,� objective. 109"
The appropriate level of regularization is again learned through cross-validation. Given these 110"
methods were built for use on microarray data and hence their dependence on normality, we 111"
applied them to a log-transformed version of our training collection (log[TPM + 0.1]). 112"

 In the third baseline (Tradict Shallow-Seq), we employ Tradict as usual; however, we 113"
restrict Tradict’s selected markers to be the 100 most abundant genes in the transcriptome. This 114"
provides a control for Tradict’s marker selection algorithm, and simulates a situation that would 115"
be typical of shallow sequencing, where only the most abundant genes are used to make 116"
conclusions about the rest of the transcriptome. 117"

 Figure 3e in the main text illustrates a performance comparison between Tradict and 118"
these three methods. 119"

 120"
Robustness to noise: We noticed that though Tradict iteratively selects markers to 121"

maximize explanatory power, these markers are not orthogonal. Consequently, during inference 122"
of the marker latent abundances, on which all expression predictions are based, the internal 123"
covariance among the markers will be used during estimation. In increasing data (larger 124"
sequencing depth, higher a priori abundance) the latent abundance inference will place less 125"
emphasis on this internal covariance; however, in situations of measurement inadequcy or error, 126"
the internal covariance will help to learn the correct latent abundances, which in turn, should 127"

stabilize predictions in noisy situations. To test this hypothesis, we considered a version of 128"
Tradict, ‘Tradict no nc’ (noise correction), in which only the diagonal of the internal marker 129"
covariance was used, effectively decoupling marker abundances in Tradict’s underlying model. 130"
We re-evaluated intra-submission prediction accuracy for all of the methods, excluding Tradict 131"
Shallow-Seq, on the same training and test set above using 100 markers. However this time, in 132"
order to simulate situations of high measurement error, we rarefied samples in the test set to 133"
0.1x depth and evaluated each method’s predicted (depth-normalized) expression accuracy; the 134"
original 1x depth values formed the basis of comparison. The 10th, 25th, 50th, 75th, and 90th 135"
percentiles of read depths in the 0.1x scenario were 0.65, 1.1, 2.1, 3.1, and 4.4 million reads, 136"
respectively -- all below the recommended depths for A. thaliana. 30-40% of the markers had 137"
zero abundance in nearly half of the samples. Figure 3b illustrates that though all methods 138"
perform worse at 0.1x depth, Tradict is least affected. Importantly, we notice that Tradict no nc’s 139"
performance is substantially reduced at lower depth, confirming our hypothesis that the internal 140"
marker covariance provides a valuable source of noise correction. 141"

 142"
Supplemental Analysis 3 - Tradict’s limitations as revealed by error, power, and program 143"
annotation robustness analyses 144"
 145"
I. Error analysis - We first performed an error analysis in order to better understand the factors 146"
that contribute toward incorrect predictions. As done previously in Supplemental Analysis 2, we 147"
partitioned our transcriptome collection for A. thaliana into a training set and test set by 148"
submission and historical date. Like before, in order to mimic Tradict’s use in practice as closely 149"
as possible, the training set contained the first 90% of submissions (208 submissions comprised 150"
of 2,389 samples) deposited on the SRA, and the test set contained the remaining 10% (17 151"
submissions comprised of 208 samples). We trained Tradict on the training set, and 152"
subsequently predicted program and gene expression in the test set using only the expression 153"
values of the selected markers as input. We evaluated test-set intra-submission performance 154"
using PCC and the normalized unexplained variance that Tradict’s prediction could not account 155"
for. Mathematically, the normalized unexplained variance metric is the ratio of the residual 156"
variance divided by the total variance of the target: 157"
 158"

!"# !"#$_!"#$!%%&'(− !!"#$%&'#$_!"#$!%%&'(
!"# !"#$_!"#$!%%&'(.

 159"
 160"

"161"
Figure S6. Error analysis reveals likely sources of prediction error. a) PCC between predicted and actual 162"
expression of transcriptional programs versus the logarithm of program expression variation (left), average 163"
abundance of genes within the program (middle), and the logarithm of the number of genes contained within the 164"
program. b) Same as (a) but with the proportion of unexplained variance as the measure of predictive performance 165"
instead of PCC. c) Relationship between PCC and unexplained variance. d) Actual log(unexplained variance) vs. 166"
predicted log(unexplained variance) based on a linear model that uses log(expression variation), average member 167"
abundance, and log(program size) as predictors of error. e-h) Same as (a-d) but for genes instead of programs. Here 168"
‘avg. abundance’ denotes the average abundance of the gene, and ‘num. programs’ denote the number of programs 169"
the gene participates in. Spearman correlation coefficient (ρ) is noted in each plot. Red lines illustrate a cubic spline 170"
interpolation. 171"

The above expression is equivalent to one minus the coefficient of determination between the 172"
prediction and the target. For each program, we then correlated these measures of performance 173"

to the magnitude of training-set expression variation, average training-set abundance of 174"
constituent genes, and the number of genes contained within the program. Similarly, for each 175"
gene, we correlated the above measures of performance to the magnitude of training-set 176"
expression variation, average training-set abundance, and the number of programs in which the 177"
gene participates. 178"

Figure S6a-b illustrate that the expression variance of the program correlates positively 179"
with better prediction performance. This makes intuitive sense, as it should be easier to 180"
understand marker-program covariance relationships and predict expression for those programs 181"
that vary more. We note, however, two outlier programs that have reasonably high expression 182"
variance, but low prediction accuracy (blue arrows, Fig. S6a-b). These programs are composed 183"
of lowly expressed genes (Fig S6a-b, middle), suggesting that the mean expression level of 184"
genes contained within a program also positively correlate with Tradict’s ability to predict that 185"
program’s expression. Finally, we note that the more genes contained within the program, the 186"
easier it is to accurately predict (Fig S6a-b, right). 187"

We built a linear model to model prediction accuracy -- as measured by log(unexplained 188"
variance) -- of a program as a function of its log(expression variance), average member 189"
abundance (as log-latent abundances), and log(program size). This model could predict 190"
log(unexplained variance) with a Spearman correlation coefficient of 0.75, suggesting that the 191"
three studied variables account for most of Tradict’s errors (Fig. S6d). We note that our 192"
performance measures -- unexplained variance and PCC -- are nearly perfectly correlated in 193"
rank (Fig. S6c), and thus the above results also apply for the PCC performance criterion. 194"

We performed a similar characterization for gene expression prediction. Unexpectedly, 195"
we found that better performance negatively correlated with increasing training-set expression 196"
variance, but only weakly so (Fig. S6e-f, left, ρ ~ 0.25). Further examination of poorly predicted, 197"
high variance genes revealed that these genes were largely lowly expressed (Fig. S6e-f, middle, 198"
blue brackets). Generally, measurements of lowly expressed genes tend to be contaminated 199"
with technical noise, making marker-gene covariance relationships difficult to estimate. 200"
Additionally, many of these genes generally have zero expression except for in a small subset 201"
of rarely sampled tissues (e.g. flower and bud, as opposed to leaf). This logistic-like distribution 202"
contributes strongly to training-set variance, but may make it difficult for Tradict, a linear method 203"
in the log-latent space, to train and predict accurately. We did not notice a strong correlation 204"
between prediction performance and the number of programs the gene participates in (Fig S6e-205"
f, right). 206"

This latter result is not unexpected. Though it is conceptually nice to think of Tradict 207"
making gene expression predictions by conditioning on program expression predictions, 208"
statistically these predictions are decoupled (see “Tradict - mathematical details” at the end of 209"
this document). Thus, there is no direct, statistical reason or methodological artifact as to why 210"
gene expression prediction accuracy should co-vary with the number of programs the gene is 211"
contained within. This result is important as it suggests that Tradict’s gene expression 212"
predictions are robust to the choice of transcriptional program annotation used. 213"

As was done for programs, we attempted to account for the log(unexplained variance) of 214"
Tradict’s gene expression predictions using a linear model with the following predictors: 215"
log(expression variance), mean (log-latent) abundance, and the number of programs the gene 216"
participates in. We could not achieve the same explanatory power for genes as we did for 217"
programs, but we could still predict prediction error with a Spearman correlation of 0.48. Like 218"
before, we note a near perfect (up to 2-decimal precision) rank-correlation between our 219"
performance criterion, PCC and unexplained variance (Fig S6g). 220"
 221"
 222"

"223"
Figure S7. Power analysis reveals Tradict needs approximately 1000 samples to make accurate predictions. 224"
Test-set prediction accuracies in the form of a) PCC or b) normalized unexplained variance as a function of the size 225"
of the A. thaliana training set. X-axis tick labels are in the form of “Y (Z)” where Y denotes the number of samples in 226"
the training set and Z denotes the number of unique submissions to which these training set samples belong. The 227"
solid line depicts the median program (red) or gene (green) and the shaded error bands denote the 20th and 80th 228"
percentile program or gene. c-d) same as (a) and (b) but for M. musculus. Plots in (a) and (c) are plotted on a base 229"
10 logarithmic scale. 230"

II. Power Analysis - We next performed a power analysis in which we examined the number of 231"
samples required for Tradict to achieve its best prediction accuracy. As done previously, we 232"
partitioned our transcriptome collection for both A. thaliana and M. musculus into a training set 233"
and test set by submission and historical date. The training set contained the first 90% of 234"
submissions (208 submissions comprised of 2,389 samples for A. thaliana, and 1,443 235"
submissions comprised of 19,703 samples for M. musculus) deposited on the SRA, and the test 236"
set contained the remaining 10% (17 submissions comprised of 208 samples for A. thaliana, 237"
and 159 submissions comprised of 1,774 samples for M. musculus). 238"

We then trained Tradict using different sized subsets of the training set and evaluated its 239"
predictive performance on the test set using the PCC and normalized unexplained variance 240"
criteria. The different sized subsets were chosen sequentially such that each subsequent subset 241"
included the submissions in the previous subset as well as more recent submissions (by date) 242"
to the SRA. Consequently, this analysis aims to mimic reality in that it shows how Tradict’s 243"
prospective test-set performance increases as more samples are submitted to the SRA. 244"
 Figure S7 shows that for both performance criterion and for both organisms, predictive 245"
performance begins to saturate for nearly all programs and genes after 750-1,000 samples are 246"
included in the training set. We note that not just any collection of 1,000 samples will do. These 247"
samples must be sufficiently varied in context in order for Tradict to perform adequate training 248"
over the variety possible transcriptomic states. By the same token, the first 1,000 samples to the 249"
SRA were likely not chosen to maximize exploration of the transcriptome. Thus, it may be 250"
possible to generate training sets that maximize Tradict’s performance with much fewer than 251"
1,000 samples. However, this latter hypothesis requires further investigation. 252"
 The requirement for 1,000 samples is already met for many commonly studied model 253"
organisms. Below are listed several eukaryotic model organisms and the number of publicly 254"
available samples that are available for it on the SRA (current as of September 23, 2016). 255"
 256"
6.9K A. thaliana 257"
110.6K M. musculus 258"
8.6K D. melanogaster 259"
5.7K S. cerevisiae 260"
72.1K H. sapiens (public) 261"
2.7K C. elegans 262"
18.1K D. Rerio 263"
Supplemental Table S5. Number of SRA RNA-Seq records for several major model 264"
organisms. Reproduced from Supplemental Table Excel document. 265"
 266"
Investigators working with any of these model organisms should have enough samples (even 267"
after quality filtering) to reliably use Tradict. Importantly, they may add their own samples to the 268"
publicly available collection to make Tradict’s predictions more accurate for their contexts of 269"
interest. 270"
 271"
III. Program annotation robustness analysis - In order to examine the impact of how the 272"
gene assignments used to define transcriptional programs affect Tradict’s performance we 273"
performed a program annotation robustness analysis. We first partitioned our transcriptome 274"
collection for both A. thaliana and M. musculus into a training set and test set by submission 275"
and historical date as done in the previous section. For each transcriptional program we then 276"
exchanged 0%, 1%, 2%, 5%, 10% 20%, 50%, 80%, or 100% of the genes annotated to be in 277"
the program for another equivalent number of genes from the transcriptome that were not in the 278"
program. This gene exchange mimics corruption in the annotation. For each of these adjusted 279"
annotations, we examined Tradict’s test-set prediction performance in the form of PCC and 280"
normalized unexplained variance. 281"
 Figure S8a-b illustrates how the PCC and normalized unexplained variance performance 282"
metrics behave as a function of the percentage of genes exchanged from each program in the 283"
A. thaliana test-set. Both performance criteria for program expression prediction show near 284"
equivalent performance for up to a 20% mis-annotation rate, which in practice is a comfortable 285"
cushion, especially for well controlled annotations, such as GO and KEGG. After a 20% mis-286"
annotation rate, the prediction accuracy for many (20-50%) programs begins to sharply 287"
deteriorate. 288"

"289"
Figure S8. Tradict is robust with respect to the annotations used to define transcriptional programs. Test-set 290"
prediction accuracies in the form of a) PCC or b) normalized unexplained variance as a function of the percentage of 291"
genes randomly exchanged for each A. thaliana transcriptional program. The solid line depicts the median program 292"
(red) or gene (green) and the shaded error bands denote the 20th and 80th percentile program or gene. c-d) same as 293"
(a) and (b) but for M. musculus. 294"

Interestingly, we note that even when 100% of genes in each program are exchanged 295"
for random ones during training, prediction PCC is high for many (>50%) of programs. To 296"
investigate this further, we examined the types of programs that maintain predictability versus 297"
those that lose it. Supplemental Table 6 shows that the programs that maintain high prediction 298"
accuracy are heavily enriched for global, transcriptionally far-reaching, “housekeeping” 299"
processes, and include processes related to growth, development, and metabolism. By contrast, 300"
the programs that are most sensitive to mis-annotation are those generally related to biotic and 301"
abiotic stress response regulons (e.g. response to light, and immune response). 302"

We note that test-set gene expression prediction performance is invariant with respect to 303"
the level of program mis-annoation. This is expected because, as described in the “Error 304"
Analysis” section, Tradict’s gene expression predictions are statistically decoupled from 305"
program expression prediction. 306"

 307"
Figure S9. Timing analysis. Training time vs. training set size in terms of number of samples. Black line denotes the 308"
total training time and colored lines depict training times for each component of training. ‘lag’ (blue) and ‘cluster’ 309"
(orange) are the times needed to compute the lag transformation of the training set and to define and cluster the 310"
transcriptional programs, respectively. ‘SOMP’ (yellow) denotes the time required to perform the Simultaneous 311"
Orthogonal Matching Pursuit decomposition of the transcriptional programs, and ‘PMVN’ (purple) denotes the time 312"
required to learn the parameters of the Continuous-Poisson Multivariate Normal hierarchical model. 313"
 314"
Supplemental Analysis 4 - Timing and memory requirements 315"
 We performed a training time analysis on the M. musculus transcriptome collection. 316"
Specifically, we recorded the time required to train Tradict as a function of the size of the 317"
training set in terms of the number of samples. Figure S9 illustrates these results, and shows 318"
that training time was approximately linear in the size of the input (0.25 seconds/sample). The 319"
largest bottlenecks during training come from lag-transforming the training-set and defining 320"
(computing the first principal component) and clustering the transcriptional programs for 321"
subsequent decomposition with Simultaneous Orthogonal Matching Pursuit. The range of 322"
training sample sizes explored here should be applicable for most contexts as the number 323"
publicly available samples for other model organisms (Supplemental Analysis 3.II) tend to be 324"
less than the number available for M. musculus. Additionally, the linear increase in time 325"
requirements suggests the method will scale well to larger datasets, with timing requirements in 326"
the hours range. 327"
 We also timed Tradict’s prediction times. We found that prediction times were linear in 328"
the number of samples and that generating a prediction for each sample required 3.1 seconds. 329"
The limiting factor here comes from MCMC sampling of the conditional posterior distributions of 330"
each gene and program. We have also developed a subroutine that allows users to just obtain 331"
maximum a posteriori estimates of gene and program expression. This prediction task is 332"
considerably faster, only requiring 0.02 seconds per sample. 333"
 Tradict’s peak memory usage during training scaled linearly with training input size. At 334"
the largest training set size examined (19,703 samples), peak memory consumption was 25.3 335"
GB. Loading the training set expression matrix alone (values stored as double precision floats) 336"
consumed 5.2 GB of memory. Regressing peak memory consumption onto training-set size we 337"

found the equation MEMORY (GB) = 0.0011*NUM_SAMPLES + 5.2 described memory usage 338"
well. 339"

All computations were performed using one core of a Lenovo P700 ThinkStation with 340"
two Intel Xeon E5-2620 v3 processors and 32 GB of DDR4 ECC RDIMM RAM. 341"
 342"
 343"

344"
Figure S10. Tradict accurately predicts temporal transcriptional responses to lipopolysaccharide treatment in 345"
a dendritic cell line CRISPR library. a) Actual vs. predicted z-score standardized expression of the “response to 346"
lipopolysachharide” transcriptional program. Samples are colored by time point. b) Receiver operator characteristic 347"
(ROC) curve illustrating Tradict’s accuracy for identifying differentially expressed (DE) transcriptional programs. Here 348"
the “truth set” was considered to be all DE programs with FDR < 0.01 based on actually measured expression values. 349"
The marked point along the ROC curve and the inset venn diagram depict the concordance between the predicted 350"
and actual set of DE transcriptional programs when an FDR threshold of 0.01 for predicted DE programs was also 351"
used. c) Predicted vs actual heatmaps of DE transcriptional programs (rows) across time for different CRISPR lines 352"
(columns). Here, DE programs included those found either in actuality or by prediction and are accordingly marked by 353"
the black and white indicator bars on the left of each sub-block. Columns of these heat maps represent different 354"
profiled lines. The first 12 correspond to negative control guides, whereas the remaining columns correspond to 355"
positive regulators of Tnf expression. The expression of programs in each sub-block is z-score normalized to their 356"
expression in the negative control guide lines. The bottom 26 programs are all of those directly related to innate 357"
immunity among the 368 programs we’ve defined for M. musculus. All heatmaps are clustered in the same order 358"
across time, genotype, and between predicted and actual."359"
"360"
Supplemental Analysis 5 - Tradict accurately predicts temporal dynamics of innate 361"
immune signaling in CRISPRed in primary immune cells"362"
 To further dissect Tradict’s capabilities, we examined a M. musculus dataset from 363"
Parnas et al. (2015) in which one of the first CRISPR screens was performed on primary 364"
immune cells to look for regulators of tumor necrosis factor (Tnf) expression5. They found many 365"
positive regulators of Tnf expression and created clonal bone-marrow derived dendritic cell 366"
(BDMC) lines where each positive regulator was disrupted using CRISPR. They used shallow 367"
RNA-sequencing (2.75 +/- 1.2 million reads) to profile the transcriptomes of these lines for 6 368"
hours after lipopolysaccharide (LPS) treatment. 369"

We asked whether Tradict’s predictions could quantitatively recapitulate actuality, 370"
despite the challengingly noisy marker measurements due to the low sequencing depth. To be 371"
specific, approximately 30% of the markers had zero measured expression in greater than 40% 372"

of samples. After performing the batch correction described in Parnas et al. (2015), we 373"
examined the expression of the “response to lipopolysaccharide” transcriptional program. 374"
Figure S6a illustrates that despite the limitation on marker measurement accuracy, Tradict 375"
predicts response to LPS with a PCC accuracy of 0.905. Differential transcriptional program 376"
expression analysis revealed that DE programs based on Tradict’s predictions were highly 377"
concordant with those based on actual measurements (Figure S6b). Strikingly, programs found 378"
DE based on Tradict predictions included 92% of those directly related to innate immune 379"
signaling in mice. 380"

We next examined the quantitative quality of Tradict predictions by observing how the 381"
DE programs found by either analysis of actual measurements or predictions behave across 382"
time. Figure S6c illustrates that despite the high marker measurement error, Tradict’s 383"
predictions are quantitatively concordant with actuality. As expected most lines of CRISPRed 384"
positive regulators demonstrate loss of innate immune signaling. 385"
 386"
 387"
 388"
 389"
 390"
 391"
 392"
 393"
 394"
 395"
 396"
 397"
 398"
 399"
 400"
 401"
 402"
 403"
 404"
 405"
 406"
 407"
 408"
 409"
 410"
 411"
 412"
 413"
 414"
 415"
 416"
 417"
 418"
 419"
 420"
 421"

Materials and Methods"422"
 423"
Data acquisition and transcript quantification 424"
Data acquisition and transcript quantification were managed using a custom script, 425"
srafish.pl. The srafish.pl algorithm and its dependencies are described below. 426"
Complete instructions for installing (including all dependencies) and using srafish.pl are 427"
available on our GitHub page: 428"
https://github.com/surgebiswas/transcriptome_compression/tree/master/data_download. 429"

 430"
Figure SM1. Algorithmic workflow of data acquisition and quantification as implemented by srafish.pl. 431"

Figure SM1 illustrates the workflow of srafish.pl. Briefly, after checking it meets certain 432"
quality requirements, srafish.pl uses the ascp fasp transfer program to download the raw 433"
sequence read archive (.sra file) for an SRA RNA-Seq sample. Transfers made using ascp are 434"
substantially faster than traditional FTP. The .sra file is then unpacked to FASTQ format using 435"
the fastq-dump program provided with the SRA Toolkit (NCBI)11. The raw FASTQ read data is 436"
then passed to Sailfish12, which uses a fast alignment-free algorithm to quantify transcript 437"
abundances. To preserve memory, files with more than 40 million reads for A. thaliana and 70 438"
million reads for M. musculus are downsampled prior to running Sailfish. Samples with fewer 439"
than 4 million reads are not downloaded at all. This workflow is then iterated for each SRA RNA-440"
Seq sample available for the organism of interest. 441"

The main inputs into srafish.pl are a query table, output directory, Sailfish index, and 442"
ascp SSH key, which comes with each download of the aspera ascp client. srafish.pl 443"
depends on Perl (v5.8.9 for Linux x86-64), the aspera ascp client (v3.5.4 for Linux x86-64), SRA 444"
Toolkit (v2.5.0 for CentOS Linux x86-64), and Sailfish (v0.6.3 for Linux x86-64). 445"

 446"
Query table construction 447"
For each organism, using the following (Unix) commands, we first prepared a “query table” that 448"
contained all SRA sample ID's as well as various metadata required for the download: 449"
 450"
qt_name=<query_table_file_name> 451"
sra_url=http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?save=efetch&db=sra&rettype=ru452"
ninfo&term= 453"
organism=<organism_name> 454"
wget -O $qt_name ‘$url($organism[Organism]) AND "strategy rna seq"[Properties]’ 455"
 456"
Where fields in between <> indicate input arguments. As an example, 457"
 458"
qt_name=Athaliana_query_table.csv 459"
sra_url=http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?save=efetch&db=sra&rettype=ru460"
ninfo&term= 461"
organism="Arabidopsis thaliana" 462"
wget -O $qt_name ‘$url($organism[Organism]) AND "strategy rna seq"[Properties]’ 463"
 464"
 465"
Reference transcriptomes and index construction 466"

Sailfish requires a reference transcriptome -- a FASTA file of cDNA sequences -- from 467"
which it builds an index it can query during transcript quantification. For the A. thaliana 468"
transcriptome reference we used cDNA sequences of all isoforms from the TAIR10 reference. 469"
For the M. musculus transcriptome reference we used all protein-coding and long non-coding 470"
RNA transcript sequences from the Gencode vM5 reference. 471"
 472"
Sailfish indices were created using the following command: 473"
 474"
sailfish index -t <ref_transcriptome.fasta> -k 20 -p 6 -o . 475"
 476"
Here, <ref_transcriptome.fasta> refers to the reference transcriptome FASTA file. 477"
Copies of the reference transcriptome FASTA files used in this study are available upon 478"
request. 479"
 480"
Quality and expression filtering 481"

Upon completion of download and transcript quantification of all samples, we assembled 482"
an n-samples x p-isoforms matrix of transcripts per million (TPM) values as calculated by 483"
Sailfish. We then proceeded to quality and expression filter the data as follows: 484"

 485"
1. We first removed samples with a read depth and mapping rate below 4 million reads 486"

and 0.75 respectively for A. thaliana and 4 million reads and 0.70 for M. musculus 487"
(Figure SM2a-b). We used a slightly lower mapping rate threshold for M. musculus 488"
because the average mapping rate for M. musculus was lower than that of A. thaliana. 489"
We reasoned this was due to the fact that the Gencode vM5 reference is likely less 490"
complete than the TAIR10 reference for M. musculus. Though these read count 491"
thresholds may be considered slightly lower than what is ideal for both organisms, 492"
raising them much higher removed a large number of samples from analysis. 493"
Importantly, low read count samples should only add to the noise in the dataset, and so 494"

the performance results presented in the main text are, if anything, artificially lower than 495"
they should be. 496"

2. Subsequently, we collapsed the isoform expression table into a gene expression table 497"
by setting a gene’s expression to be the sum of the expression values of all isoforms of 498"
that gene. 499"

3. We next removed all non-protein coding transcripts except for long non-coding RNAs, 500"
and removed samples with large amounts (>30%) of non-protein coding contamination 501"
(e.g. rRNA). 502"

4. The dataset was then expression filtered by only keeping genes with expression greater 503"
than 1 TPM in at least 5% of all samples. The latter requirement ensures that outlier or 504"
extreme expression in just a few samples is not enough to keep the gene for analysis. 505"

5. We then removed samples with an abnormally large number of genes with expression 506"
values of zero. To do this we calculated the mean and standard deviation of the number 507"
of genes with zero expression across all samples. Samples with the number of zero 508"
expressed genes greater than the mean plus two times the standard deviation were 509"
removed. 510"

6. Finally, we removed outlier samples by first examining the proportion of zeros contained 511"
in each sample and by computing the pairwise Pearson correlation coefficient between 512"
the gene expression profiles of all samples. To improve heteroskedasticity, raw TPM 513"
values for each gene were converted to a log-scale (log10[TPM + 0.1]) prior to 514"
calculating correlations. For A. thaliana, the majority of samples had an average 515"
correlation with other samples of greater than 0.45 and fewer than 20% percent zero 516"
values. Samples with lower correlation or a greater percentage of zeros were removed 517"
(Figure SM2c). By similar arguments, samples with less average correlation than 0.55 518"
with other samples and greater than 30% zeros were removed for M. musculus (Figure 519"
SM2d). Manual inspection of ~100 of these samples revealed they were highly enriched 520"
for non-polyA selected samples and samples made from low-input RNA (e.g. single-521"
cells). 522"

 523"
Figure SM2. Quality filtering thresholds for mapping depth and proportion (a,b), and for average correlation to 524"

other samples and proportion of zeros (c,d). 525"

 526"

Metadata annotation 527"
RNA-Seq samples are submitted to the SRA with non-standardized metadata annotations. For 528"
example, for some samples tissue and developmental stage are clearly noted as separate 529"
fields, whereas in others such information can only be found the associated paper's abstract or 530"
sometimes only in its main text. In order to ensure the maximum accuracy when performing 531"
metadata annotations, we annotated samples manually until the structure of the gene 532"
expression space represented by the first three principal components was clear. Annotation was 533"
accomplished by first finding those few submissions with samples in multiple clusters. These 534"
submissions revealed that the likely separating variables of interest were issue and 535"
developmental context. For each major cluster in the PCA (determined visually) we then 536"
annotated samples by size of their submission until the tissue or developmental context of that 537"
cluster became qualitatively clear. 538"
 539"
Tradict algorithm 540"
Tradict’s usage can be broken down into two parts: 1) Training, and 2) Prediction. Training is 541"
the process of learning, from training data, the marker panel and its predictive relationship to the 542"
expression of transcriptional programs and to the remaining genes in the transcriptome. In 543"
essence, during training we begin with full transcriptome data and collapse its information into a 544"
subset of marker genes. Prediction is the reverse process of predicting the expression of 545"
transcriptional programs and non-marker genes from the expression measurements of just the 546"
selected markers. 547"

Our training algorithm can be broken down into several steps: 1) Computing the latent 548"
logarithm of the training transcriptome collection, 2) defining transcriptional programs, 3) marker 549"
selection via Simultaneous Orthogonal Matching Pursuit, 4) building a predictive Multivariate 550"
Normal Continuous-Poisson hierarchical model. 551"
 552"
1) Computing the latent logarithm of the training transcriptome collection - Expression 553"

values in our training dataset are stored as transcripts per million (TPM), which are non-554"
negative, variably scaled, and strongly heteroscedastic, similar to read counts. For 555"
subsequent steps in our algorithm and analysis it will be important transform this data to 556"
improve its scaling and heteroscedasticity. 557"

Often, one log transforms such data. However, to avoid undefined values where the data 558"
are zeros, one also adds a pseudocount (e.g. 1). This pseudocount considers neither the 559"
gene’s a priori abundance nor the confidence with which the measurement was made, 560"
making this practice convenient but statistically unfounded. In previous work, we introduced 561"
the latent logarithm, or “lag”13. lag assumes that each observed expression value is actually 562"
a noisy realization of an unmeasured latent abundance. By taking the logarithm of this latent 563"
abundance, which considers both sampling depth and the gene’s a priori abundance, lag 564"
provides a more nuanced and statistically principled alternative to the conventional “log(x + 565"
pseudocount)”. In increasing data, lag quickly converges to log, but in the absence of it, lag 566"
relies on both sampling depth and the gene’s a priori abundance to make a non-zero 567"
estimate of the gene’s latent abundance. 568"

With these intuitions in mind, we apply the lag transformation to our entire training 569"
dataset. The lag-transformed expression matrix demonstrated a Pearson correlation of 0.98 570"
to the log(TPM + 0.1) transformed expression matrix for both A. thaliana and M. musculus, 571"
but again, especially for samples with 0 expression, lag is able to make better estimates of 572"
their true abundance in the log-domain. 573"

Availibility: https://github.com/surgebiswas/latent_log.git 574"
 575"

2) Defining transcriptional programs - We define a transcriptional program to be the first 576"
principal component of the z-score standardized lag expression of the set of genes involved 577"
in a certain response or pathway14,15. This virtual program marker maximally captures (in 578"
one dimension) the information contained in the transcriptional program. We considered 579"
three criteria for defining a globally comprehensive, but interpretable list of transcriptional 580"
programs for A. thaliana and M. musculus: 581"
 582"
a) In order to capture as much information about the transcriptome as possible, we wanted 583"

to maximize the number of genes covered by the transcriptional programs. 584"
b) In order to improve interpretability, we wanted to minimize the total number of 585"

transcriptional programs. 586"
c) The number of genes in a transcriptional program should not be too large or too small -- 587"

genes in a transcriptional program should be in the same pathway. 588"
 589"
Rather than defining these transcriptional programs de novo, we took a knowledge-590"

based approach and defined them using Gene Ontology (GO). We also tried using KEGG 591"
pathways, but found these were less complete and nuanced than GO annotations. Gene 592"
Ontology is made of three sub-ontologies or aspects: Molecular Function, Biological 593"
Process, and Cellular Component. Each of these ontologies contains terms that are 594"
arranged as a directed acyclic graph with the above three terms as roots. Terms higher in 595"
the graph are less specific than those near the leaves16,17. Thus, with respect to the three 596"
criteria above, we wanted to find GO terms with low-to-moderate height in the graph such 597"
that they were neither too specific nor too general. Given we were interested in monitoring 598"
the status of different processes in the organism, we focused on the Biological Process 599"
ontology. 600"

We downloaded gene association files for A. thaliana and M. musculus from the Gene 601"
Ontology Consortium (http://geneontology.org/page/download-annotations). We then 602"
examined for each of several minimum and maximum GO term sizes (defined by the 603"
number of genes annotated with that GO term) the number of GO terms that fit this size 604"
criterion and the number of genes covered by these GO terms. 605"

Supplemental Tables 1 and 2 contain the results of this analysis for A. thaliana and M. 606"
musculus, respectively. A. thaliana has 3333 GO annotations for 27671 genes. We noticed 607"
that when the minimum GO term size was as small as it could be (1) and we moved from a 608"
maximum GO term size of 5000 to 10000, we jumped from covering 18432 genes (67% of 609"
the transcriptome) to covering the full transcriptome (black bolded two rows of Supplemental 610"
Table 1). This is due to the addition of one GO term, which was the most general, “Biological 611"
Process,” term. Thus, we concluded that 33% of the genes in the transcriptome have only 612"
“Biological Process” as a GO annotation, and therefore that we do not need to capture these 613"
genes in our GO term derived gene sets. Though these genes are not informatively 614"
annotated, we Tradict still model their expression all the same. We hereafter refer to the set 615"
of genes annotated with more than just the “Biological Process” term as informatively 616"
annotated. 617"

We reasoned that a minimum GO term size of 50 and a maximum size of 2000, best met 618"
our aforementioned criteria for defining globally representative GO term derived gene sets. 619"
These size thresholds defined 150 GO terms, which in total covered 15124 genes (82.1% of 620"
the informatively annotated, and 54.7% of the full transcriptome). These 150 GO-term 621"
derived, globally comprehensive transcriptional programs covered the major pathways 622"
related to growth, development, and response to the environment. 623"

We performed a similar GO term size analysis for M. musculus. M. musculus has 10990 624"
GO annotations for 23566 genes. Of these genes, 6832 (29.0%) had only the “Biological 625"

Process” term annotation and were considered not informatively annotated. As we did for A. 626"
thaliana, we selected a GO term size minimum of 50 and a maximum size of 2000. These 627"
size thresholds defined 368 GO terms, which in total covered 14873 genes (88.9% of the 628"
informatively annotated, 63% of the full transcriptome). As we found for A. thaliana, these 629"
368 GO-term derived, globally comprehensive transcriptional programs covered the major 630"
pathways related to growth, development, and response to the environment. 631"

Supplemental Tables 3 and 4 contain the lists of the globally comprehensive 632"
transcriptional programs as defined by the criteria above. For each of these programs, we 633"
then computed its first principal component over all constituent genes. 634"

 635"
3) Marker selection via Simultaneous Orthogonal Matching Pursuit - After defining 636"

transcriptional programs we are left with a #-training-samples x #-transcriptional-programs 637"
table of expression values. We decompose this matrix using an adapted version of the 638"
Simultaneous Orthogonal Matching Pursuit, using the #-training-samples x #-transcriptional-639"
programs table as a dictionary18,19. Because transcriptional programs are often correlated 640"
with other programs, we first cluster them using consensus clustering20,21, which produces a 641"
robust and stable clustering by taking the consensus of many clusterings performed by a 642"
base clustering algorithm. 100 independent iterations of K-means are used as the base-643"
clusterings, and the number of clusters is determined using the Davies-Bouldin criterion22. 644"
The decomposition is greedy, in which during each iteration, the algorithm first finds the 645"
transcriptional program cluster with the largest unexplained variance. It then finds the gene 646"
contained within this cluster of transcriptional programs with the maximum average absolute 647"
correlation to the expression of all transcriptional programs. This gene is then added to an 648"
“active set,” onto which the transcriptional program expression matrix is orthogonally 649"
projected. This fit is subtracted to produce a residual, on which the above steps are 650"
repeated until a predefined number of genes have been added to the active set or the 651"
residual variance of the transcriptional program expression matrix falls below some 652"
predefined threshold. 653"
 654"

4) Building a predictive Multivariate Normal Continuous-Poisson hierarchical model 655"
Here we describe conceptually how we fit a predictive model that allows us to predict 656"

gene and transcriptional program expression from expression measurements of our 657"
selected markers. Readers interested in the full mathematical details of the Multivariate 658"
Normal Continuous-Poisson hierarchical model are referred to the attached “Tradict - 659"
mathematical details” document. 660"

The Multivariate Normal Continuous Poisson distribution offers us a way of modeling 661"
statistically coupled count based or, more generally, non-negative random variables, such 662"
as the TPM or count-based expression values of genes23–27. Here it is assumed the TPM 663"
expression of each gene in a given sample is a noisy, Continuous-Poisson realization of 664"
some unmeasured latent abundance, the logarithm of which comes from Multivariate-665"
Normal distribution over the log-latent abundances of all genes in the transcriptome. 666"

 Given the marginalization properties of the multivariate normal distribution, we are only 667"
interested in learning relationships between the selected markers and non-marker genes. 668"
For the purposes of prediction, we need to estimate 1) the mean vector and 2) covariance 669"
matrix over the log-latent TPMs of the markers, 3) the mean vector of the log-latent TPMs of 670"
the non-markers, and 4) cross-covariance matrix between the log-latent TPMs of markers 671"
and non-markers. 672"

Note that before we can estimate these parameters, we must learn the log-latent TPMs 673"
of all genes. To do this we first lag-transform the entire training dataset. We then learn the 674"
marker log-latent TPMs, and their associated mean vector and covariance matrix using an 675"
iterative conditional modes algorithm. Specifically, we initialize our estimate of the marker 676"

log-latent TPMs to be the lag-transformed expression values, which by virtue of the lag’s 677"
probabilistic assumptions are also derived from a Normal Continuous-Poisson hierarchical 678"
model. We then iterate 1) estimation of the mean vector and the covariance matrix given the 679"
current estimate of log-latent TPMs, and 2) maximum a posteriori estimation of log-latent 680"
TPMs given the estimated mean vector, covariance matrix, and the measured TPM values 681"
of the selected markers. A small regularization is added during estimation of the covariance 682"
matrix in order to ensure stability and to avoid infinite-data-likelihood singularities that arise 683"
from singular covariance matrices. This is most often happens when a gene’s TPM 684"
abundance is mostly zero (i.e. there is little data for the gene), giving the multivariate normal 685"
layer an opportunity to tightly couple this gene’s latent abundance to that of another gene, 686"
thereby producing a nearly singular covariance matrix. 687"

Learning the mean vector of the non-marker genes and the marker x non-marker cross-688"
covariance matrix is considerably easier. For the mean vector, we simply take the sample 689"
mean of the lag-transformed TPM values. For the cross-covariance matrix we compute 690"
sample cross-covariance between the learned log-latent marker TPMs and the log-latent 691"
non-marker TPMs obtained from the lag transformation. We find hat these simple sample 692"
estimates are highly stable given that our training collection includes thousands to tens of 693"
thousands of transcriptomes. 694"

Using similar ideas, we can also encode the expression of the transcriptional programs. 695"
Recall that a principal component output by PCA is a linear combination of input features. 696"
Thus by central limit theorem, the expression of these transcriptional programs should 697"
behave like normal random variables. Indeed, after regressing out the first 3 principal 698"
components computed on the entire training samples x genes expression matrix from the 699"
expression values of the transcriptional programs (in order to remove the large effects of 700"
tissue and developmental stage), 85-90% of the transcriptional programs had expression 701"
that was consistent with a normal distribution (average p-value = 0.43, Pearson’s chi-702"
squared test). Consequently, as was done for non-marker genes and as will be needed for 703"
decoding, we compute the mean vector of the transcriptional programs and the markers x 704"
transcriptional programs cross covariance matrix. These are given by the standard sample 705"
mean of the training transcriptional program expression values and sample cross-706"
covariance between the learned log-latent TPMs of the markers and the transcriptional 707"
program expression values. 708"

 709"
To perform prediction, we must translate newly obtained TPM measurements of our marker 710"

genes into expression predictions for transcriptional programs and the remaining non-marker 711"
genes. More specifically, we’d like to formulate these predictions in the form of conditional 712"
posterior distributions, which simultaneously provide an estimate of expression magnitude and 713"
our confidence in that estimate. To do this, we first sample the latent abundances of our 714"
markers from their posterior distribution using the measured TPMs, and the 1 x markers mean 715"
vector and markers x markers covariance matrix previously learned from the training data. This 716"
is done using Metropolis-Hastings Markov Chain Monte Carlo sampling (see “Tradict - 717"
mathematical details” attached to this document for greater details on tuning the proposal 718"
distribution, sample thinning, sampling depth, and burn-in lengths). Using these sampled latent 719"
abundances and the previously estimated mean vectors and cross-covariance matrices, we 720"
then can use standard Gaussian conditioning to sample the log-latent expression of the 721"
transcriptional programs and the remaining genes in the transcriptome from their conditional 722"
distribution. These samples, in aggregate, are samples from the conditional posterior 723"
distribution of each gene and program and can be used to approximate properties of this 724"
distribution (e.g. posterior means, and/or credible intervals). 725"

 726"
 727"

References 728"
1. Crowley, J. J. et al. Analyses of allele-specific gene expression in highly divergent mouse 729"

crosses identifies pervasive allelic imbalance. Nat. Genet. 47, (2015). 730"
2. Greenham, K. & McClung, C. R. Integrating circadian dynamics with physiological 731"

processes in plants. Nat Rev Genet 16, 598–610 (2015). 732"
3. Donner, Y., Feng, T., Benoist, C. & Koller, D. Imputing gene expression from selectively 733"

reduced probe sets. Nat. Methods 9, (2012). 734"
4. Gelman, A. et al. Bayesian Data Analysis. (Chapman & Hall, 2013). 735"
5. Parnas, O., Jovanovic, M., Eisenhaure, M. & Zhang, F. A Genome-wide CRISPR Screen 736"

in Primary Immune Cells to Dissect Regulatory Networks. Cell 162, 1–12 (2015). 737"
6. New England BioLabs Inc. SplintR Ligase. at <https://www.neb.com/products/m0375-738"

splintr-ligase> 739"
7. Lohman, G. J. S., Zhang, Y., Zhelkovsky, A. M., Cantor, E. J. & Jr, T. C. E. Efficient DNA 740"

ligation in DNA – RNA hybrid helices by Chlorella virus DNA ligase. Nucleic Acids Res. 741"
1–14 (2013). doi:10.1093/nar/gkt1032 742"

8. Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for 743"
multiplexed target capture. Genome Res. 22, 939–946 (2012). 744"

9. Yang, L. et al. The Pseudomonas syringae type III effector HopBB1 fine tunes pathogen 745"
virulence by gluing together host transcriptional regulators for degradation. Submitted 746"
(2016). 747"

10. Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical 748"
innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 749"
(2013). 750"

11. Leinonen, R., Sugawara, H. & Shumway, M. The Sequence Read Archive. 39, 2010–751"
2012 (2011). 752"

12. Patro, R., Mount, S. M. & Kingsford, C. Sailfish enables alignment-free isoform 753"
quantification from RNA-seq reads using lightweight algorithms. Nat. Biotechnol. 32, 462–754"
4 (2014). 755"

13. Biswas, S. The latent logarithm. arXiv 1–11 (2016). 756"
14. Ma, S. & Kosorok, M. R. Identification of differential gene pathways with principal 757"

component analysis. Bioinformatics 25, 882–889 (2009). 758"
15. Fan, J. et al. Characterizing transcriptional heterogeneity through pathway and gene set 759"

overdispersion analysis. Nat. Methods 13, 241–244 (2016). 760"
16. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat Genet 25, 25–761"

29 (2000). 762"
17. The Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic 763"

Acids Res. 43, D1049–D1056 (2015). 764"
18. Tropp, J. a & Gilbert, A. C. Signal Recovery From Random Measurements Via 765"

Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 53, 4655–4666 (2007). 766"
19. Tropp, J. a., Gilbert, A. C. & Strauss, M. J. Algorithms for simultaneous sparse 767"

approximation. Part I: Greedy pursuit. Signal Processing 86, 572–588 (2006). 768"
20. Monti, S., Tamayo, P., Mesirov, J. & Golub, T. Consensus Clustering!: A Resampling-769"

Based Method for Class Discovery and Visualization of Gene Expression Microarray 770"
Data. Mach. Learn. 52, 91–118 (2003). 771"

21. Yu, Z., Wong, H.-S. & Wang, H. Graph-based consensus clustering for class discovery 772"
from gene expression data. Bioinforma. 23 , 2888–2896 (2007). 773"

22. Davies, D. L. & Bouldin, D. W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. 774"
Mach. Intell. 2, 224–227 (1979). 775"

23. Aitchison, J. & Shen, S. M. Logistic-Normal Distributions: Some Properties and Uses. 776"
Biometrika 67, 261 (1980). 777"

24. Aitchison, J. & Ho, C. H. The multivariate Poisson-log normal distribution. Biometrika 76, 778"
643–653 (1989). 779"

25. Biswas, S., Mcdonald, M., Lundberg, D. S., Dangl, J. L. & Jojic, V. Learning Microbial 780"
Interaction Networks from Metagenomic Count Data. in Res. Comput. Mol. Biol. 1, 32–43 781"
(2015). 782"

26. Ho, C. H. & Kong, H. The multivariate Poisson-log normal distribution. 2, (1989). 783"
27. Madsen, L. & Dalthorp, D. Simulating correlated count data. Environ. Ecol. Stat. 14, 129–784"

148 (2007). 785"
 786"

Tradict - mathematical details1

Surojit Biswas, Konstantin Kerner, Paulo José Pereira Lima Texeira,

Je↵ery L. Dangl, Vladimir Jojic, Philip A. Wigge

2

Contents3

1 Preliminaries 14

2 Model 15

3 Training 26

3.1 Inference of z
m

given µ

(m) and ⌃(m) . 37
3.2 Complete inference of µ(m), ⌃(m), and z

m

. 48

4 Prediction 59

4.1 MAP estimation of gene and program abundances . 510
4.2 Posterior density estimation of gene and program abundances 611

4.2.1 Sampling z

m

via MCMC . 612
4.2.2 Sampling program and gene abundances . 713

5 References 814

This document describes the full mathematical details for the concepts presented in the “Tradict algo-15
rithm” section, “Building a predictive Multivariate Normal Continuous-Poisson hierarchical model” subsec-16
tion of the Materials and Methods in the Supplemental Information. Specifically, we present exactly how17
Tradict uses a selected set of markers to 1) complete training, and 2) to perform prediction.18

1 Preliminaries19

For a matrix A, A
:i

and A

i:

index the i

th column and row, respectively. For a set of indices, q, we use �q to20
refer to all indices not specified by q.21

2 Model22

Tradict uses a Continuous-Poisson Multivariate Normal (CP-MVN) hierarchical model to model the expres-23
sion of transcriptional programs and all genes in the transcriptome. Multivariate Normal hierarchies have24
been explored in the past as a means of modeling correlation structure among count based random variables25
[1, 2, 3, 4]. However, given we will be working with abundances as transcripts per million (TPM), which26
are non-negative (can equal zero) and fractional, we relax the integral assumption of the Poisson so it is27
continuous on [0,1). Specifically, we define the continuous relaxation of the Poisson distribution (hereafter,28
Continuous-Poisson) to have the following density function:29

f(x|�) = C

�

e

��

�

x

�(x+ 1)

1

where C

�

is a normalization constant. The mean of this distribution is given by �, just as the Poisson.30
We begin by building a predictive model of gene expression, and thereafter discuss a predictive model31

for the expression of transcriptional programs. Let z
j

denote the log-latent abundance of gene j, such that32
exp(z

j

) is the latent abundance of that gene (in TPM) whose measured abundance is given by t

j

. Let33
T

j

= t

j

o be the measured total number of transcripts of gene j. Here o is the sequencing depth in millions34
of reads of the sample under consideration. We assume then,35

z ⇠ N (µ,⌃)

T

j

⇠ Continuous-Poisson(exp(z
j

)o)

where µ and ⌃ are of dimension 1 ⇥ #-genes and #-genes ⇥ #-genes, respectively. In e↵ect, we are assuming36
that the measured number of transcripts for gene j is a noisy realization of a latent abundance exp(z

j

) times37
the sequencing depth, o. The dependencies between log-latent abundances (the z

j

’s) are then encoded by38
the covariance matrix of the Multivariate Normal layer of the model.39

Note that we could model the TPM measurements directly in the second layer by assuming t

j

⇠40
Continuous-Poisson(exp(z

j

)); however, this formulation does not consider sequencing depth, which can be a41
valuable source of information when inferring latent abundances for rare/poorly sampled genes [5].42

During prediction, we are interested in building a predictive model between markers and all genes in the43
transcriptome. Therefore, we need to consider a conditional model of the transcriptome given the log-latent44
abundances of the markers. Let m be the set of indices for the given panel of selected markers, which are the45
subset of genes Tradict selects as representative of the transcriptome. To perform prediction we therefore46
need p(z�m

|z
m

). We have,47

z

m

⇠ N (µ(m)

,⌃(m))

z�m

|z
m

⇠ N (µ
z�m|zm ,⌃

z�m|zm)

T

j

⇠ Continuous-Poisson(exp(z
j

)o)

Here, µ(m) and ⌃(m) refer to mean vector and covariance matrix of z
m

. Given these, the conditional48
mean of the log-latent abundances for all non-marker genes can be obtained through Gaussian conditioning.49
Specifically, for two normally distributed row-vector variables a and b the conditional mean of b given a is50
given by µ

b|a = µ

b

+ (a� µ

a

)⌃�1

a

�

ab

and ⌃
b|a = ⌃

b

� �

T

ab

⌃�1

a

�

ab

, where �

ab

is the cross-covariance between51
a and b, and ⌃

a

and ⌃
b

are the covariance matrices of a and b, respectively.52
Given the expression of a transcriptional program is a linear combination of the latent abundances53

of its constituent genes, they will be normally distributed given 1) Central Limit Theorem, and 2) the54
latent abundances themselves are normally distributed (convolutions of normals are normals). Let s be the55
expression of all transcriptional programs. We posit the following model,56

z

m

⇠ N
⇣
µ

(m)

,⌃(m)

⌘

s|z
m

⇠ N (µ
s|zm ,⌃

s|zm)

To use these models for prediction, we must learn their parameters from training data. This would complete57
the process of training described in the Supplemental Information. Specifically, we need to learn µ

(m), ⌃(m),58
µ

s

, µ
z�m , �

zm,s

and �

zm,z�m .59

3 Training60

As described in the Supplemental Information, given an estimate of z
m

, ẑ
m

, inference of µ
s

, µ
z�m , �

zm,s

and61
�

zm,z�m is straightforward. In lag transforming the entire training TPM expression matrix, t 2 Rsamples⇥genes,62
we have an estimate of z, ẑ = lag(t) [5]. Thus, an estimate of µ

z�m is given by the usual column-wise sample63
mean of ẑ�m

.64

2

Let ⇤ 2 Rgenes⇥transcriptional programs be a matrix of principal component 1 coe�cients over genes for each65
transcriptional program. Note, that ⇤

ij

= 0 if gene i is not in transcriptional program j. An estimate of s66
is given by ŝ = ẑ⇤, and so an estimate for µ

s

, µ̂
s

, is given by the usual column-wise mean of ŝ.67
Given ẑ

m

the cross-covariances, �
zm,s

and �

zm,z�m , are given by the usual sample cross-covariance between68
ẑ

m

and ŝ and between ẑ

m

and ẑ�m

, respectively.69
Now, though we could use the lag-transformed values of t

m

as our estimate for z
m

, we have an opportunity70
to improve this estimate by virtue of having to estimate µ(m) and ⌃(m). More specifically, given z

m

, estimates71
of µ(m) and ⌃(m) are given by – up to some regularization – the usual sample mean and covariance of z

m

.72
Furthermore, given µ

(m) and ⌃(m), we can update our estimate of z

m

to the maximum of its posterior73
distribution. This suggests an alternating iterative procedure in which we iterate 1) estimation of µ(m) and74
⌃(m), and 2) maximum a posteriori inference of z

m

until convergence of their joint likelihood. It is the ẑ

m

75
that we obtain from this procedure that we use in the cross-covariance calculations above. The following76
section details this procedure.77

3.1 Inference of zm given µ(m)
and ⌃

(m)
78

Suppose Tradict has estimates of µ(m) and ⌃(m) given by µ̂

(m) and ⌃̂(m), and let T
m

= t

m

(o ⇥ 1

1⇥markers

)79
be a matrix of the total measured number of transcripts for each marker. Here o 2 Rsamples⇥1 is a vector80
of sample sequencing depths in millions of reads. Given these, we would like to calculate the maximum a81
posteriori (MAP) estimate of ẑ

m

= argmax
zm

p(z
m

|o, T
m

, µ̂

(m)

, ⌃̂(m)).82
The posterior distribution over z

m

is given by83

p(z
m

|o, T
m

, µ̂

(m)

, ⌃̂(m)) =
p(T

m

|o, z
m

, µ̂

(m)

, ⌃̂(m))p(z
m

|µ̂(m)

, ⌃̂(m))
R
k

p(T
m

|o, k, µ̂(m)

, ⌃̂(m))p(k|µ̂(m)

, ⌃̂(m))dk

/
nY

i=1

p(T
im

|o, z
im

, µ̂

(m)

, ⌃̂(m))p(z
im

|µ̂(m)

, ⌃̂(m))

=
nY

i=1

2

4
|m|Y

j=1

C

[exp(zij)oi]
[exp(z

ij

)o
i

]Tij
e

�[exp(zij)oi]
/�(T

ij

+ 1)

3

5

⇥ 1
q
2⇡|⌃̂(m)|

|m| exp

✓
�1

2
(z

i:

� µ̂

(m))inv
⇣
⌃̂(m)

⌘
(z

i:

� µ̂

(m))T
◆

where for notational clarity we have used inv(·) to represent matrix inverse.84
Given z is a matrix parameter, this may be di�cult to solve directly. However, note that given z

ij

, T
ij

85
is conditionally independent of T

i,�j

. Additionally, given z

i,�j

, z
ij

is normally distributed with mean and86
covariance87

a

ij

= µ

(m)

j

+
⇣
z

i,�j

� µ

(m)

�j

⌘
inv

⇣
⌃(m)

�j,�j

⌘
⌃(m)

�j,j

�

m(j)

= ⌃(m)

j,j

� ⌃(m)

j,�j

inv
⇣
⌃(m)

�j,�j

⌘
⌃(m)

�j,j

respectively. Taken together, this suggests an iterative conditional modes algorithm [6] in which we maximize88
the posterior one column of z at a time, while conditioning on all others.89

Let ẑ
m

denote our current estimate of z
m

. Let m(j) denote the index of the j

th marker and let m(�j)90

3

denote the indices of all markers but the j

th one. The above sub-objective is given by,91

ẑ

im(j)

= argmax
zim(j)|zim(�j)

log p(z
im(j)

|T
im(j)

, o

i

, ẑ

im(�j)

, µ̂

(m)

, ⌃̂(m))

= argmax
zim(j)|zim(�j)

log p(T
im(j)

|z
im(j)

, o

i

, ẑ

im(�j)

, µ̂

(m)

, ⌃̂(m))p(z
im(j)

|ẑ
im(�j)

, µ̂

(m)

, ⌃̂(m))

= argmax
zim(j)|zim(�j)

log p(T
im(j)

|z
im(j)

, o

i

)p(z
im(j)

|ẑ
im(�j)

, µ̂

(m)

, ⌃̂(m))

= argmax
zim(j)|zim(�j)

log

[exp(z

im(j)

)o
i

]Tim(j)
e

�[exp(zim(j))oi] exp

✓
� 1

2�
m(j)

(z
im(j)

� a

im(j)

)2
◆�

= argmax
zim(j)|zim(�j)

T

im(j)

exp(z
im(j)

)o
i

� exp(z
im(j)

)o
i

� 1

2�
m(j)

(z
im(j)

� a

im(j)

)2

Di↵erentiating we get,92

@

@z

im(j)

T

im(j)

z

im(j)

o

i

� exp(z
im(j)

)o
i

� 1

2�
m(j)

(z
im(j)

� a

im(j)

)2

= T

im(j)

o

i

� exp(z
im(j)

)o
i

� 1

�

m(j)

(z
im(j)

� a

im(j)

)

Because z

im(j)

appears as a linear and exponential term, we cannot solve this gradient analytically. We93
therefore utilize Newton-Raphson optimization. For this we also require the Hessian, which is given by,94

@

@z

im(j)

T

im(j)

o

i

� exp(z
im(j)

)o
i

� 1

�

m(j)

(z
im(j)

� a

im(j)

)

= � exp(z
im(j)

)o
i

� 1

�

m(j)

< 0

Notice the Hessian is always negative-definite, which implies each update has a single, unique optimum.95
In practice, the Newton-Raphson updates can be performed in vectorized fashion iteratively for each96

column of z. We generally find that this optimization takes 5-15 iterations (full passes over all columns97
of z) and less than a minute to converge. We refer to the program that performs these calculations as98

ẑ

m

= MAP_z
⇣
t, o, µ̂

(m)

, ⌃̂(m)

⌘
.99

3.2 Complete inference of µ(m)
, ⌃

(m)
, and zm100

For complete inference we use the following iterative conditional modes algorithm [6]:101

• Initialize T

m

= t

m

(o⇥ 1

1⇥markers

), ẑ
m

= lag(t
m

).102

• Until convergence of log p(T
m

|o, ẑ
m

, µ̂

(m)

, ⌃̂(m)) + log p(ẑ
m

|µ̂(m)

, ⌃̂(m)), iterate:103

– Update µ̂

(m) and ⌃̂(m):104

µ̂

(m) =
1

#samples

X

i

ẑ

im

⌃̂(m) =
1

#samples� 1

X

i

(ẑ
im

� µ̂

(m))T (ẑ
im

� µ̂

(m)) + �diag
h
cov

⇣
ẑ

(init)

m

⌘i

– Update ẑ

m

= MAP_z
⇣
t, o, µ̂

(m)

, ⌃̂(m)

⌘
.105

4

Here diag(x) of the square matrix x returns an equivalently sized matrix with only the diagonal of x preserved106
and 0’s for the o↵-diagonal terms. cov(·) denotes the usual sample covariance matrix.107

Note that in this algorithm we have added a regularization to the estimate of the covariance matrix.108
This is done in order to ensure stability and to avoid infinite-data-likelihood singularities that arise from109
singular covariance matrices. This is most often happens when a gene’s TPM abundance is mostly zero (i.e.110
there is little data for the gene), giving the multivariate normal layer an opportunity to increase the data111
likelihood (via the determinant of the covariance matrix) by tightly coupling this gene’s latent abundance112
to that of another gene, thereby producing a singularity. This regularization is probabilistically equivalent113
to adding an Inverse-Wishart prior over ⌃(m). The parameter � controls the strength of the regularization.114
In practice, we find � = 0.1 leads to good predictive performance, stable (non-singular) covariance matrices,115
and reasonably quick convergence.116

4 Prediction117

During prediction we are given new measured TPM measurements for our markers, t⇤
m

2 Rquery samples⇥|m|,118
and we must make predictions about the expression of all transcriptional programs and the remaining non-119
marker genes. We have two options available to us: 1) Calculate a point (MAP) estimate or 2) calculate the120
complete posterior distribution over each non-marker gene and transcriptional program in a fully Bayesian121
manner. The former option is faster, but the second gives more information on the uncertainty of the122
prediction. We therefore implement both options in Tradict and detail their derivation below. Note that123
knowing the entire posterior distribution allows one to derive whatever estimator they would like, and so124
option 2, informationally speaking, supersets option 1.125

4.1 MAP estimation of gene and program abundances126

We first need an estimate of the log-latent abundances ẑ⇤
m

associated with t

⇤
m

. Given the estimates µ̂(m) and127
⌃̂(m) obtained from the training data, we obtain these estimates as128

ẑ

⇤
m

= MAP_z
⇣
t

⇤
m

,1

query samples⇥1

, µ̂

(m)

, ⌃̂(m)

⌘

Given the inferred marker latent abundances, we let our estimates of s⇤ and t

⇤
m

be the maximizers of129
their probability distribution. In other words, ŝ⇤ = argmax

s

⇤ p(s⇤|ẑ⇤
m

) and t̂

⇤
m

= argmax
t

⇤
m
p(t⇤

m

|ẑ⇤
m

).130
Our estimate for the expression of all transcriptional programs is given by131

argmax
s

⇤
p(s⇤|ẑ⇤

m

) = E[s⇤|ẑ⇤
m

] = µ

s

⇤|ẑ⇤
m
= µ̂

s

+
⇣
ẑ

⇤
m

� µ̂

(m)

⌘
inv

⇣
⌃̂(m)

⌘
�̂

zm,s

.

Here, µ̂

s

and �̂

zm,s

represent estimates of the unconditional mean of s and the cross-covariance matrix132
between z

m

and s previously learned during training.133
Similarly, for the entire transcriptome we have,134

t̂

⇤
ij

= argmax
t

p(t|ẑ⇤
im

) = exp
�
µ

zij |ẑ⇤
im

�
.

where,135

µ

zij |ẑ⇤
im

= µ̂

j

+
⇣
ẑ

⇤
im

� µ̂

(m)

⌘
inv

⇣
⌃̂(m)

⌘
�̂

zm,zj

We could also use the expected value of t as our estimate.136

E[t⇤
ij

|ẑ⇤
im

] =

Z 1

�1
E[t⇤

ij

|z⇤
ij

]p(z
ij

|ẑ⇤
im

)dz
ij

=

Z 1

�1
exp(z

ij

)N (z
ij

|µ
zij |ẑ⇤

im
,⌃

zij |ẑ⇤
im
)dz

ij

= EN [exp(z
ij

)|ẑ⇤
im

]

5

The Moment Generating Function of a Normal random variable X with mean µ and variance �

2 is given by137
M(t) = E[exp(tX)] = exp(µt+ �

2

t

2

/2). Therefore we have,138

E[t⇤
ij

|ẑ⇤
im

] = EN [exp(z
ij

)|ẑ⇤
im

] = M(1) = exp

✓
µ

zij |ẑ⇤
im

+
1

2
⌃

zij |ẑ⇤
im

◆

where,139

µ

zij |ẑ⇤
im

= µ̂

j

+
⇣
ẑ

⇤
im

� µ̂

(m)

⌘
inv

⇣
⌃̂(m)

⌘
�̂

zm,zj

⌃
zij |ẑ⇤

im
= �̂

jj

� �̂

T

zm,zj
inv

⇣
⌃̂(m)

⌘
�̂

zm,zj

Here, µ̂
j

and �̂

zm,zj represent estimates of the unconditional mean of z
j

and the cross-covariance matrix140
between z

m

and z

j

. These were learned from the training data during encoding.141
Though this predictor is unbiased, it does not produce a good prediction for most samples. This is due142

to the right-skew of the Poisson, which drags its mean away from the most likely values.143

4.2 Posterior density estimation of gene and program abundances144

The above predictions represent point estimates. Ideally, we would like to know the uncertainty around these145
estimates. Given measurements of the representative markers, we can estimate the posterior distribution of146
expression values for transcriptional programs and the non-markers, and therein calculate any point estimates147
and/or measures of uncertainty. Recall that for transcriptional programs:148

z

m

⇠ N
⇣
µ

(m)

,⌃(m)

⌘

s|z
m

⇠ N (µ
s|zm ,⌃

s|zm)

And similarly for genes (among which the marker genes are included) we have:149

z

m

⇠ N (µ(m)

,⌃(m))

z�m

|z
m

⇠ N (µ
z�m|zm ,⌃

z�m|zm)

T

j

⇠ Continuous-Poisson(exp(z
j

)o)

Given z

m

, the distribution of expression values are simple normal distributions with analytically available150
means and covariances. However, because z

m

is unknown, we must factor into our estimate its distribution,151
which is both a function of observed data (t

m

, o) and prior information (in the form of µ̂(m) and ⌃̂(m)). Our152
strategy to estimate the posterior density of programs and non-markers will therefore be to sample from153
the posterior of z

m

, and then given these draws, sample from the conditional Normal distribution of each154
program and non-marker gene.155

4.2.1 Sampling z

m

via MCMC156

To sample z

m

we use Metropolis-Hastings Markov Chain Monte Carlo (MCMC) sampling [7], using the157
following posterior density function:158

p(z
m

|o, T
m

, µ̂

(m)

, ⌃̂(m)) =
p(T

m

|o, z
m

, µ̂

(m)

, ⌃̂(m))p(z
m

|µ̂(m)

, ⌃̂(m))
R
k

p(T
m

|o, k, µ̂(m)

, ⌃̂(m))p(k|µ̂(m)

, ⌃̂(m))dk

/
nY

i=1

p(T
im

|o, z
im

, µ̂

(m)

, ⌃̂(m))p(z
im

|µ̂(m)

, ⌃̂(m))

=
nY

i=1

2

4
|m|Y

j=1

C

[exp(zij)oi]
[exp(z

ij

)o
i

]Tij
e

�[exp(zij)oi]
/�(T

ij

+ 1)

3

5

6

Note that we do not require the marginal distribution for Metropolis-Hastings sampling.159
As our proposal distribution we use:160

z

(i+1)

m

= N
⇣
z

(i)

m

, �I|m|⇥|m|

⌘
.

Here z(i) is the ith draw from the sampler, and � represents the width (variance) of the proposal distribution.161
To choose this width, we examine, for a schedule of proposal widths (50 logarithmically spaced widths between162
103.5 and 10�1), which width gives an acceptance rate closest to 0.234 – the ideal rate for a high dimensional163
parameter [7]. Using this width, we sample 20,100 times from the sampler. We burn-in the first 100 samples164
and keep every 100th sample thereafter (to o↵set the e↵ects of the chain’s auto-correlation) as our draws165
from the distribution. Note that we initialize the chain at the MAP estimate of z

m

. This ensures the chain166
is stationary from the beginning.167

4.2.2 Sampling program and gene abundances168

Given our M = 200 draws,
h
z

(i)

m

i
M

i=1

, we can sample from the conditional distribution of each program and169
gene.170

Our i(th) draw from the posterior distribution over all programs is obtained from sampling the following171
Multivariate-Normal,172

s

(i)|z(i)
m

⇠ N
⇣
µ

s|z(i)
m
,⌃

s|z(i)
m

⌘

where173

µ

s|z(i)
m

= µ̂

s

+
⇣
z

(i)

m

� µ̂

(m)

⌘
inv

⇣
⌃̂(m)

⌘
�̂

zm,s

⌃
s|z(i)

m
= ⌃̂

s

� �̂

T

zm,s

inv
⇣
⌃̂(m)

⌘
�̂

zm,s

Similarly, our i

(th) draw from the posterior distribution over all genes could be obtained from sampling174
the following Multivariate-Normal,175

z

(i)

�m

|z(i)
m

⇠ N
⇣
µ

z�m|z(i)
m
,⌃

z�m|z(i)
m

⌘

where176

µ

z�m|z(i)
m

= µ̂

z�m +
⇣
z

(i)

m

� µ̂

(m)

⌘
inv

⇣
⌃̂(m)

⌘
�̂

zm,z�m

⌃
z�m|z(i)

m
= ⌃̂

z�m � �̂

T

zm,z�m
inv

⇣
⌃̂(m)

⌘
�̂

zm,z�m

However, given the size of ⌃
z�m|z(i)

m
(approximately 21000⇥21000), this is not easily doable. Recall, though,177

that one of our basic assumptions is that the conditional mean abundance of all genes given the abundance178
of our markers has the covariance structure of all genes su�ciently built in. Thus, we assume179

N
⇣
µ

z�m|z(i)
m
,⌃

z�m|z(i)
m

⌘
⇡ N

⇣
µ

z�m|z(i)
m
, diag

⇣
⌃

z�m|z(i)
m

⌘⌘

Here diag(·) replaces all o↵-diagonal entries with zeros. Consequently, we only need to compute the diagonal180
entries of the conditional covariance matrix. Futhermore, given the conditional mean of each gene, we can181
sample it’s abundance in parallel and independently of all others.182

From the M samples we have from the conditional posterior distribution of each program and gene,183
we can estimate properties of the posterior distribution. As point estimates for expression we can use the184
posterior mean or mode. As confidence estimates for expression we can build credible intervals.185

7

5 References186

[1] C H Ho and Hong Kong. The multivariate Poisson-log normal distribution. 2, 1989.187

[2] L. Madsen and D. Dalthorp. Simulating correlated count data. Environmental and Ecological Statistics,188
14(2):129–148, March 2007.189

[3] Surojit Biswas, Meredith Mcdonald, Derek S Lundberg, Je↵ery L Dangl, and Vladimir Jojic. Learning190
Microbial Interaction Networks from Metagenomic Count Data. In Research in Computational Molecular191
Biology, volume 1, pages 32–43, 2015.192

[4] Hao Wu, Xinwei Deng, and Naren Ramakrishnan. Sparse Estimation of Multivariate Poisson Log-Normal193
Models from Count Data. arXiv, 2016.194

[5] Surojit Biswas. The latent logarithm. arXiv, pages 1–11, 2016.195

[6] Julian Besag. On the Statistical Analysis of Dirty Pictures. Journal of the Royal Statistical Society,196
48(3):259–302, 1986.197

[7] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin.198
Bayesian Data Analysis. Chapman & Hall, 3rd edition, 2013.199

8

