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Abstract

Plant phenology is known to depend on many different environmental variables, but soil micro-
bial communities have rarely been acknowledged as possible drivers of flowering time. Here, we
tested separately the effects of four naturally occurring soil microbiomes and their constituent soil
chemistries on flowering phenology and reproductive fitness of Boechera stricta, a wild relative of
Arabidopsis. Flowering time was sensitive to both microbes and the abiotic properties of different
soils; varying soil microbiota also altered patterns of selection on flowering time. Thus, soil
microbes potentially contribute to phenotypic plasticity of flowering time and to differential selec-
tion observed between habitats. We also describe a method to dissect the microbiome into single
axes of variation that can help identify candidate organisms whose abundance in soil correlates
with flowering time. This approach is broadly applicable to search for microbial community mem-
bers that alter biological characteristics of interest.
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INTRODUCTION

Dissecting complex environments into biotic and abiotic com-
ponents for individual study may lead to surprising and novel
discoveries about how organisms respond phenotypically and
evolutionarily to their habitats. This is because the net effect
of a given environment is the accumulation of effects due to
all relevant components of the ecosystem. Selection on floral
characteristics, for instance, is mediated by many agents
including pollinators, herbivores, temperature and water avail-
ability (Strauss & Whittall 2006). Thus, the complexity of nat-
ural habitats can preclude identification of the precise
stimulus for phenotypic change or natural selection in the field
(Anderson et al. 2014). By isolating simpler components of
complex habitats, we can test whether each affects the pheno-
type expressed by a given genotype, the adaptive value of that
phenotype, or both. These two effects of environment – phe-
notypic plasticity (Bradshaw 1965) and differential selection
(Wade & Kalisz 1990) – are crucial to understanding trait
evolution and fitness both in a historical context and in the
context of a changing planet. Despite their importance, most
ecological drivers of trait expression and natural selection are
unknown (MacColl 2011). Because environmental effects are
best understood as responses of one trait to a specific stimulus
(Bradshaw 1965), disentangling the precise ecological interac-

tions that cause plasticity and differential selection in nature
is an important goal (MacColl 2011).
For plants, soil is a key component of the complex natural

habitat. Soils contain intricate patterns of chemical, physical
and microbial variation that are linked on continental (Fierer
& Jackson 2006) and centimetre scales (Ettema & Wardle
2002; Berg & Smalla 2009). Feedbacks between above-ground
plant communities, below-ground microbial communities and
nutrient availability are common (Ettema & Wardle 2002; van
der Heijden et al. 2008; Berg & Smalla 2009). At the level of
populations and individual plants, soil microbes can affect
plant growth (Rodrı́guez & Fraga 1999; van der Heijden et al.
2008), resistance to infection (Berendsen et al. 2012) and
above-ground herbivory (Hol et al. 2010). In addition,
microbes can mediate adaptation to novel environments (Lau
& Lennon 2012). Subsets of the soil microbiome interact with
plants by colonizing aerial plant tissues (Vorholt 2012) or the
rhizosphere or root (Bulgarelli et al. 2012, 2013; Lundberg
et al. 2012). Thus, soil chemistry, plant biology and microbial
ecology are intricately linked (Ettema & Wardle 2002; Berg &
Smalla 2009) and soils comprised many potential biotic and
abiotic selective agents.
In this study, we investigated the role of soil as a driver of

plasticity and as an agent of selection on flowering time, an
important ecological trait for plants and their communities
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(Forrest & Miller-Rushing 2010). Flowering phenology has a
strong genetic component (Brachi et al. 2010) but also
responds to stimuli including temperature (Aikawa et al.
2010), water availability (Borchert et al. 2004; Crimmins et al.
2013), pathogen infection (Korves & Bergelson 2003) and her-
bivory (Brys et al. 2011). While soil chemistry is known to
affect flowering time (Pigliucci et al. 1995; Stanton et al. 2000;
Brun et al. 2003; Ryser & Sauder 2006), soil microbial com-
munities have rarely been acknowledged as possible drivers of
reproductive timing in plants. Furthermore, previous studies
that explored the relationship between soil microbiome, flow-
ering and selection used domesticated plants, artificial micro-
bial communities, and/or biota from heavily disturbed soils
(Batten et al. 2007; Lau & Lennon 2011, 2012). Although
these experiments provide evidence that soil microbes change
plant reproductive timing and selection pressures, they allow
us to draw only limited conclusions about the evolutionary
importance of this process.
Here, we asked whether (1) flowering phenology is plastic in

response to different soil microbiomes, and (2) soil microbial
communities alter the intensity of selection on flowering phe-
nology. We further asked whether (3) relative abundance of
specific members of the microbiome predict the observed effects
of microbial treatments on flowering time. To test these
hypotheses, we grew gnotobiotic (i.e. germinated in sterile
conditions) seedlings of the non-mycorrhizal wild mustard
Boechera stricta (Graham) Al-Shehbaz in sterilised potting soil
inoculated with microbial communities extracted from soils of
four undisturbed natural habitats. To enable comparison of
biotic and abiotic soil variables, we also grew seedlings in field
soils collected from the same habitats, which were sterilised to
eliminate their natural microbiomes but retained their chemical
and physical differences. For each individual plant, we recorded
the day of first flowering, height, number of leaves and number
of fruits. We quantified selection on phenology as the linear
relationship between flowering time and fruit production.
Rather than manipulating microbial communities, we used

presumably intact communities extracted from soils collected
from undisturbed field sites near wild B. stricta populations.
Our experiment included 48 natural, inbred accessions that
represent the breadth of genetic diversity harboured by
B. stricta in the study region (central Idaho, USA). Further-
more, we focused on a phenotype (flowering time) that is
under selection in this species in a nearby field site (Anderson
et al. 2011). To our knowledge, no other study has tested
whether naturally occurring soil biotas from multiple undis-
turbed habitats affect flowering phenology and selection on
flowering time, nor has any study of the relationship between
soil microbes and phenology explicitly accounted for genetic
variation among undomesticated plant populations.

MATERIAL AND METHODS

In summary, we sterilised potting soil to kill the resident mi-
crobiome, and then inoculated subsets of the sterilised potting
soil with microbial communities extracted from soils from
four different field sites. To create four additional treatments
that captured abiotic soil variation, we sterilised the same four
field-collected soils.

Sterilised potting soil was saturated with inoculum and
sterilised field soils were saturated with buffer (see below) for
10 days. Then, 48 accessions of B. stricta were transplanted as
gnotobiotic seedlings into all treatments (48 genotypes 9 8
treatments 9 4 replicates = 1536 individuals). All pots were
randomised into blocks of 200 and maintained under con-
trolled greenhouse conditions throughout the experiment,
except for 7 weeks of 4 °C vernalization in a growth chamber.
We measured plant height and leaf number on the date of
first flowering. Here, we focus on phenology and fecundity of
the 51% of plants that flowered successfully. Among those
plants that flowered, the experimental design exhibited only
modest imbalance, with substantial sample sizes remaining in
every subspecies 9 treatment cell (mean N = 54.6, median
N = 56.5). Factors influencing probability of flowering and
other fitness components are beyond the scope of this study;
we found no evidence that any experimental treatments
affected flowering probability of surviving plants (v2 = 8.86,
d.f.num = 7, P = 0.26). Reproductive fitness was estimated as
the number of fruits on each individual at 33 weeks of age; in
B. stricta, fruit set is strongly and positively correlated with
seed production in the greenhouse (R2 = 0.72, P < 0.0001,
N = 103, A. Manzaneda 2008, unpubl. data).

Soil and seed collections

Soils were collected from four natural B. stricta habitats
(described in Appendix S1) in central Idaho, USA, separated
by ~26–92 km and differing in elevation, temperature, water
availability, density and diversity of vegetation and many soil
properties (M.R. Wagner, unpubl. data). Collection locations
were named ‘Jackass Meadow’ (abbreviated ‘JAM’), ‘Mahog-
any Valley’ (‘MAH’), ‘Parker Meadow’ (‘PAR’), and ‘Silver
Creek’ (‘SIL’). These remote sites have little history of distur-
bance by humans, are home to endogenous B. stricta popula-
tions and function well as common gardens for B. stricta field
experiments (Rushworth et al. 2011). Therefore, they are legit-
imate potential habitats that B. stricta likely encountered dur-
ing its evolutionary history in this region. Each soil collection
(August 2012) comprised five subsamples from the four cor-
ners and approximate centre of a ~150 m2 area, at a depth of
~10–30 cm. Subsamples were combined and mixed thor-
oughly, sieved through ~1.25 cm wire mesh to remove rocks
and coarse detritus, shipped to Duke University and stored in
plastic bags at 4 °C for ~3 months until further use. We also
collected seven ~1 mL soil vouchers from each site for micro-
bial community analysis: three in August 2011, and at all sites
except PAR, four in August 2012. Vouchers were frozen at
�20 °C until DNA extraction in late 2012.
B. stricta seeds were collected from 48 natural populations,

including four from the soil collection sites. Their sites of ori-
gin span over 1000 m in elevation (Table S1) and are sepa-
rated by between ~1 km and ~350 km, with the exception of
the ‘SAD12’ genotype from Colorado. Because B. stricta is
naturally inbred and exhibits high FIS (i.e. individuals are lar-
gely homozygous) and FST (i.e. low genetic variation within
populations and substantial divergence among populations;
Song et al. 2006), each population was represented by a dis-
tinct genotype. This diverse collection of genotypes included
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24 from each of the ecologically divergent ‘east’ and ‘west’
subspecies (Lee & Mitchell-Olds 2013). We used seeds from a
single mother descended from the original field-collected acces-
sion, self-pollinated in the greenhouse for at least one genera-
tion, to minimise maternal effects; i.e. individuals within a
genotype were self-full sibs (as in Anderson et al. 2011).

Microbial treatments in sterilised potting soil

To create four soils that were identical except for their micro-
bial communities, we extracted microbes from field soils into
sterile buffer and soaked sterilised potting soil in the resulting
suspensions. We prepared inocula from 75 g subsamples of
each field-collected soil stirred into 1 L of 2.5 mM MES mono-
hydrate (Sigma Aldrich, St. Louis, MO, USA) in sterile diH2O
(pH adjusted to 5.7 with KOH). After settling for 30 min the
suspensions were vacuum filtered (11-lm pore size) to remove
particulates. Filtrates were centrifuged 30 min at 3000 g at
room temperature to pellet microorganisms. To remove dis-
solved nutrients, we discarded the supernatants and resus-
pended the microbe-enriched pellets in 1 L sterile 2.5 mM MES.
This process mostly eliminated variation in chemical properties
that differentiate the field soils (Fig. S1, Table S2). Each rack of
200 pots was bottom saturated with 400 mL of one of the
microbial suspensions, 6 g 20-10-20 fertiliser and sterile diH2O
for a total treatment volume of 4 L. The fertiliser was added to
encourage seedling survival and to counteract possible soil
impoverishment due to autoclaving (Berns et al. 2008). An
additional 1 mL of undiluted microbial suspension was pipetted
into each pot. Treatments derived by this process are termed
‘biotic’ or ‘microbial treatments’ throughout. It is possible that
the filtration and recolonization processes somewhat altered
community structures; however, the differences between our
experimental inocula – and their effects on the plants – originate
from corresponding differences between real Boechera habitats.

Sterilised field soil treatments

We sterilised soils from four natural habitats to create growth
substrates with different physical and chemical properties, but
without their natural microbiomes. After subsampling to
extract microbial communities (see above), we sterilised the
four field-collected soils via autoclaving (Appendix S2). These
soils were loosely packed into clean pots and bottom satu-
rated with 400 mL sterile 2.5 mM MES, 6 g 20-10-20 fertiliser
and sterile diH2O to bring the treatment volume to 4 L. An
additional 1 mL sterile 2.5 mM MES was pipetted into each
pot. Treatments derived by this process are termed ‘abiotic’ or
‘sterilised field soils’. Although it is likely that autoclaving
these soils changed their fertility, they appear to have retained
at least some of their natural chemical variation (Fig. S1).

Plant care and trait measurement

Surface-sterilised seeds of 48 genotypes (Table S1) were strati-
fied on autoclaved filter paper at 4 °C in the dark for 2 weeks,
then placed in a growth chamber to germinate for 1 week
(conditions in Appendix S2). Four germinated seedlings per
genotype were transplanted into each of the eight experimen-

tal soils described above, one seedling per pot. Eight pots per
treatment were left unplanted as controls. All pots were imme-
diately rearranged into randomised blocks and maintained in
controlled greenhouse conditions (Appendix S2) for the dura-
tion of the experiment. Plants were top watered as needed
with RO water, and received an additional 4 mL 20-10-20 fer-
tiliser (dissolved in sterile diH2O) via pipet when 1 month old.
Two-month-old plants were transferred to a 4 °C vernaliza-
tion treatment, where they remained for 7 weeks.
After vernalization, plants were returned to the greenhouse,

checked three times weekly for flowers and allowed to set
fruit. Flowering was defined as sufficient separation of the
corolla such that four distinct petals could be identified. The
number of days between end of vernalization and first flower-
ing is termed interchangeably ‘flowering time’ and ‘flowering
phenology’ throughout. On the day of first flower for each
plant we measured the individual’s height (defined as the
length of green tissue up to the apical meristem) and number
of leaves. The last census was done 8 weeks post vernaliza-
tion; the 749 plants that had not flowered by this date were
excluded from all future analyses. The experiment ended
2 months after the final flowering census, when almost all
fruits had matured and dehisced. These cut-offs for flowering
time and fruit production are realistic given the short growing
season observed in the field. At this time we counted the num-
ber of fruits produced by each individual.

Soil bacterial analyses

Due to current methodological limitations, in this study we
focus on the prokaryotic component of the soil microbiome
(i.e. bacteria and archaea). We extracted DNA from field-col-
lected soil vouchers using the MoBioTM PowerSoil DNA Isola-
tion Kit (MoBio Laboratories, Carlsbad, CA, USA) and
amplified variable region 4 of the bacterial 16S rRNA gene
using established primer pairs 515F and 806R and PNA PCR
clamps to reduce plastid and mitochondrial contamination
(Lundberg et al. 2013). Paired-end 2 9 250 bp sequencing of
barcoded amplicons was performed on a MiSeq machine run-
ning v2 chemistry (Illumina Inc., San Diego, CA, USA) at the
Joint Genome Institute (Walnut Creek, CA, USA). The primer
sequences were trimmed from the paired-end sequences, which
were then overlapped and merged using FLASH (Mago�c &
Salzberg 2011). Merged sequences were grouped into opera-
tional taxonomic units (OTUs) based on 97% sequence iden-
tity, and chimeric sequences were removed, using the UPARSE
pipeline (Edgar 2013). Taxonomies were assigned as in Lund-
berg et al. (2012). Unclassifiable OTUs at the kingdom level,
OTUs matching Viridiplantae, mitochondrial, or plastid
sequences were excluded by using BLAST to compare them to
a custom database of contaminant sequences (Lundberg et al.
2013). Unclassifiable OTUs at the kingdom level and rare or
non-reproducible OTUs were also excluded as in Lundberg
et al. (2012), resulting in 7844 OTUs. To control for unequal
sequencing effort, we normalised data by rarefaction to 40 000
reads/sample using QIIME-1.7.0 (Fig. S2; Caporaso et al.
2010). Diversity analyses were performed after correcting data
for 16S gene copy number variation using scripts provided in
Kembel et al. (2012); OTUs without taxonomic information
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were assigned the mean copy number (2.805725). Linear
regressions were performed before this correction but the
resulting parameter estimates were adjusted as necessary.

Statistical analysis

To test the hypothesis that soil properties affect flowering
time, we used restricted maximum likelihood (REML) linear
mixed models with treatment, subspecies and treat-
ment 9 subspecies as fixed factors; block, genotype nested
within subspecies and treatment 9 genotype as random fac-
tors; and elongation rate (mm/day), height at first flowering
(mm) and leaves per mm stem as covariates (justification in
Appendix S2). To test for treatment effects on overall plant
size we used multivariate analysis of variance (MANOVA) with
treatment, subspecies and treatment 9 subspecies as fixed fac-
tors. We analysed the parallel ‘biotic’ and ‘abiotic’ experi-
ments separately, i.e. one model tested only for effects of soil
microbiomes on flowering time, and another identical model
tested only for effects of physical soil differences; we did not
directly compare the effects of these two types of soil varia-
tion. These models were run using JMP� Pro version 10.0.0
(SAS Institute, Cary, NC, USA). Statistical significance of
random effects was determined by REML likelihood ratio test
and results were graphed using ggplot2 (Wickham 2009) in R
version 3.0.2 (R Core Team 2013).
To test the hypothesis that soil properties alter selection on

flowering time, we used a REML linear mixed model with the
same terms as above, plus flowering time (days after vernaliza-
tion) and flowering time 9 treatment as additional fixed
effects. The response variable was number of fruits. Thus, the
flowering time term describes the change in fecundity attrib-
uted to a change in flowering time, i.e. selection. We analysed
the parallel ‘biotic’ and ‘abiotic’ experiments separately as
above. We performed these models both with and without
including elongation rate, height at first flowering and leaves
per mm stem as covariates; the former model describes the
selection gradient on flowering time (i.e. direct selection on
flowering time independent of selection on covariates), and the

latter model describes the selection differential (i.e. total selec-
tion on flowering time, including indirect effects of selection
on covariates). Introducing a quadratic term did not improve
fit, so our model considers only linear effects (i.e. directional
selection). Sample sizes were slightly smaller than for the flow-
ering time models because 17 individuals were accidentally dis-
carded after flowering. Main models were performed in JMP;
selection differentials and selection gradients were calculated
in R.
For some models, non-uniformly distributed residuals

might have influenced judgments about significance. This het-
eroscedasticity resisted data transformation and resolved only
when covariates were removed. In general, results with and
without covariates were similar, suggesting that significance
was robust to heteroscedasticity in the standard model. For
the sake of caution, for all of our major results, we per-
formed permutation tests (which do not assume uniform
residuals) to verify the results of the standard analysis of var-
iance (ANOVA).
Rarefied microbial communities were analysed in the R

package ‘vegan’ (Oksanen et al. 2013). Principal coordinates
(PCo) of Bray–Curtis pairwise dissimilarities were identified
using the vegan function ‘capscale’. Similarity of samples
within vs. among sites was tested using the non-parametric
permutation test ADONIS with 9999 permutations con-
strained by collection year. To ask which components of
microbial communities affect flowering phenology and selec-
tion, we regressed mean flowering time in each biotic Treat-
ment (using residuals from the linear models described above
in Table 1a, excluding terms with the ‘Treatment’ factor) onto
the mean PCo score from the corresponding site. To ask
which OTUs underlie the observed phenotypic effect, we iden-
tified the 10 OTUs most highly correlated with the PCo axes
and regressed the same flowering time residuals on the OTUs’
mean abundances at each site. We used the Wilcoxon rank-
sum test to compare relative abundances of common taxa
between groups of samples associated with extreme pheno-
types. P-values were adjusted using Benjamini–Hochberg false
discovery rate. Our method of searching for microbial

Table 1 Statistics for REML mixed models of flowering time for (a) soil microbial community treatments and (b) sterilised field soil treatments

(a) Soil microbial communities

(N = 451, Adj. R2 = 0.74)

(b) Sterilised field soils

(N = 336, Adj. R2 = 0.72)

d.f. F or v2 P d.f. F or v2 P

Treatment 3,87 4.242 0.0076* 3,96 6.586 0.0004

Subspecies 1,67 6.861 0.0109 1,64 0.085 0.7717

Treatment 9 subspecies 3,88 2.346 0.0782 3,91 0.206 0.8919

Genotype (ssp.) 2 30.08 <0.0001 2 0.864 >0.05
Geno. (ssp.) 9 treatment 6 0.000 >0.05 6 0.160 >0.05
Block 1 0.083 >0.05 1 0.785 >0.05
Elongation rate 1,428 304.2 <0.001 1,278 342.9 <0.0001

Height at flowering 1,387 239.0 <0.001 1,240 278.1 <0.0001

Leaves per mm stem 1,428 15.96 <0.001 1,298 21.38 <0.0001

All effects are fixed except for Block, Genotype (ssp.) and Genotype (ssp.) 9 Treatment. For fixed effects the test statistic F is reported. For random

effects, the test statistic v2 is reported, calculated as twice the difference between log likelihoods of the full model and the model with the random factor

excluded. A similar model that did not control for growth-related covariates yielded similar results (Table S4). Parameter estimates are listed in Table S4.

Bold type indicates significance of at least P < 0.05.

*Permutational ANOVA confirmed significance at P = 0.005.

© 2014 John Wiley & Sons Ltd/CNRS

720 M. R. Wagner et al. Letter



community members that underlie our phenotype of interest
is described in more detail in Appendix S3.

RESULTS

Microbial communities and physical soil types each alter mean

flowering time

Soil microbiota altered mean flowering time across all geno-
types (Fig. 1a; Table 1a; F3,87 = 4.242, P = 0.008; permuta-
tional ANOVA P = 0.005). In particular, the MAH microbiome
delayed flowering by 2.2 days on average (or 1.5 days when
controlling for plant size and growth rate; Table S3). This delay
translates to a 9% fitness decrease based on the selection differ-
ential measured at a similar field site (Anderson et al. 2011).
Although western genotypes appear more sensitive to microbes
than eastern genotypes (Fig. 1a, c), the subspecies difference in
microbiome-driven plasticity of flowering time was not signifi-
cant (Treatment 9 subspecies: F3,88 = 2.346, P = 0.078). Geno-
type explained 34.5% of the variance in flowering time,
indicating substantial among-population genetic variation for
flowering phenology across all microbiomes (v2 = 30.08,
d.f.num = 2, P < 0.0001). In contrast, genotype 9 treatment
explained no variation, suggesting a lack of genetic diversity
for flowering time plasticity in response to soil microbiota.
Excluding growth-related covariates from the model did not

qualitatively change the results (Table S4a). Neither soil micro-
biome (MANOVA Wilks’ k = 0.982, F9,1073 = 0.90, P = 0.53) nor
subspecies 9 soil microbiome (MANOVA Wilks’ k = 0.976, F9,1073 =
1.21, P = 0.28) affected overall plant size.
Differences between sterilised field soils also affected flower-

ing phenology (Figs. 1b, d; Table 1b; F3,96 = 6.586,
P = 0.0004). PAR soil had the most extreme effect, delaying
flowering by 2.8 days after controlling for effects on growth.
Again, the subspecies did not differ in their flowering time
response to soil type (Fig. 1d; F3,91 = 0.206, P = 0.8919).
Genotype explained only 5.7% of the variance in flowering
time (v2 = 0.864, d.f. = 2, P > 0.05) and genotype 9 treatment
explained 4.72% (v2 = 0.160, d.f. = 6, P > 0.05), indicating
scant genetic variation for flowering time plasticity in response
to abiotic soil variation. However, genetic effects were more
pronounced when growth covariates were excluded from the
model (Table S4b).

Microbial community, but not soil chemistry, alters selection on

flowering time

Selection on flowering time depended on soil microbiome.
This result held both for selection gradients (independent of
selection on correlated traits; Fig. 2c, Table 2a;
F3,246 = 3.489, P = 0.016; permutational ANOVA P = 0.024)
and selection differentials (net selection on flowering time,
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Figure 1 Variation in both soil microbiota and soil chemistry alters flowering phenology. Mean flowering time post vernalization (raw data, in days) is

shown for each subspecies in (a) four microbial treatments and (b) four sterilised field soils. (c) and (d) show mean flowering time residuals, after

controlling for genetic differences and growth covariates, for each subspecies in biotic and abiotic treatments respectively. Error bars depict one standard

error from the mean. Parameter estimates and standard errors are reported in Table S3.
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including indirect effects of selection on covarying traits;
Fig. 2a, Table S5a). The most extreme change was between
the PAR and SIL soil biotas (Fig. 2a), with selection differ-
entials of + 0.034 and � 0.043 fruits per day (or + 1.4% and
� 1.8% fruits per day) respectively. The magnitude of this
difference in selection is 1.2 times the selection differential
measured in a nearby field site (Anderson et al. 2011). We
detected no directional selection on flowering time when
averaged across all treatments (F1,403 = 0.009, P = 0.924),
suggesting that treatment differences in selection intensity
cancelled each other out. On average, western genotypes pro-
duced 0.75 more fruits than eastern – a 27% increase
(F1,69 = 7.351, P = 0.008; Table S3). In addition, genetic dif-
ferences among populations within subspecies contributed
20.4% of the variance in fecundity (v2 = 13.79, d.f. = 2,
P < 0.01). However, the lack of subspecies 9 treatment and
genotype 9 treatment interactions shows that genetic effects
on performance were not microbiota dependent. Finally, fit-
ness was consistent across microbial treatments
(F3,86 = 2.123, P = 0.103), indicating no net effect of different
microbiomes on fecundity (Tables 2a, S3).
In contrast, we found no evidence that different sterilised

field soils affect flowering time selection differentials (Fig. 2b;
F3,301 = 0.809, P = 0.17) or gradients (Fig. 2d; F3,305 = 1.552,
P = 0.20). However, these treatments affected overall
fecundity (F3,110 = 5.849, P = 0.001; Table S3), indicating

strong differences in soil quality. Western genotypes produced
69% more fruits than eastern genotypes on average
(F1,64 = 16.13, P = 0.0002), but this advantage was consistent
across all soils (Table S3). We detected no net selection gradi-
ent on flowering time across all field soils (F1,308 = 0.376,
P = 0.540); however, we did find a significant selection differ-
ential on flowering time (� 0.036 or � 1.4% fruits per day;
F1,313 = 6.473, P = 0.011; Table S5).

Separation of microbiome components reveals finer details of

selection and phenology control

Sampled soil microbiomes differed between sites within year
(R2

ADONIS = 0.29, P = 0.003) but not between years within site
(R2

ADONIS = 0.03, P = 0.56). These results are supported by
PCo analysis, in which samples clustered mainly by site
(Fig. 3a). The first three PCo cumulatively explained 69.8% of
prokaryotic community variation (Fig. S3). Because the MAH
and JAM soils, which had the slowest and fastest flowering
times, respectively, in our experiment, were separated primarily
on the PCo2 axis (Fig. 3a), PCo2 became our candidate mi-
crobiome component to test for effects on flowering time.
Because eastern genotypes appeared insensitive to microbes
(Fig. 1c), we used flowering time residuals of western geno-
types as the response variable. We did not find a significant
relationship between mean flowering time in each treatment
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Figure 2 Different soil microbiota, but not sterilised field soils, alter selection on flowering time. Fecundity as a function of flowering time is shown for four

different (a, c) soil microbial communities and (b, d) sterilised field soils. (a) and (b) depict selection differentials on flowering phenology, i.e. both direct

selection on flowering time and indirect selection on correlated traits, after controlling for block effects and genetic differences in fitness. The statistics for

the selection differential model are in Table S5. (c) and (d) depict selection gradients on flowering phenology, i.e. only direct selection on flowering time

after controlling for selection on growth-related covariates in addition to block effects and genetic differences in fitness (statistics in Table 2).
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and the mean PCo2 score of soil samples from the correspond-
ing site (Fig. 3b; F1,2 = 2.362; P = 0.26). Likewise, none of the
individual OTUs with high PCo2 scores predicted flowering
time (Table S6); for instance, abundance of OTU_96997
(Hyphomicrobiaceae) appeared to correlate with phenology
but the relationship was non-significant after correction for
multiple comparisons (Fig. 3c; F1,2 = 25.74; P = 0.037;
PFDR = 0.38). These negative results may be due to lack of
power caused by our sampling scheme (N = 4; Appendix S3).
The phyla Proteobacteria and Crenarchaeota were more

abundant, and Acidobacteria were less abundant, in slow-flow-
ering MAH compared to fast-flowering JAM soil communities
(Table 3b). Within phyla, several families – including Koribact-
eraceae, Solibacteraceae, Opitutaceae, Verrucomicrobiaceae,
Solirubrobacteraceae and Mycobacteriaceae – differed in rela-
tive abundance between MAH and JAM soil communities
(Fig. S4, Table S7). In addition, Verrucomicrobia and Gem-
matimonadetes were enriched in the 5% of OTUs with the
highest loadings on PCo2 compared to the full natural commu-
nities (Table 3c), indicating that these phyla contribute dispro-
portionately to the microbiome variation summarised by PCo2.
These ‘candidate taxa’ are promising organisms for further
study of microbial influences on flowering time.

DISCUSSION

Our analysis of native plant genotypes and soil microbial
communities from four undisturbed environments suggests
that soil microbiomes contribute to the ecology and evolution
of flowering phenology in B. stricta. First, we showed that soil
microbiota influenced phenotypic plasticity of flowering time.
Second, soil microbiota altered the strength and direction of
selection on flowering time. Finally, we showed how this type
of experiment could be combined with quantitative descrip-
tions of soil community composition to search for microbial
species that affect important phenotypes. Our results show
that experimental dissection of complex environments can

reveal the ecological interactions shaping phenotypic expres-
sion and natural selection.
Our finding that both soil microbes and soil chemistry cause

plasticity of flowering time agrees with previous reports,
although to our knowledge only one other study has tested
the effects of both biotic and abiotic components of the same
soil. Lau & Lennon (2012) found that Brassica rapa flowered
faster in dry conditions, and that a soil microbial community
with a history of drought stress accelerated flowering
compared to the wet-adapted replicate of the same commu-
nity. Other soil properties reported to delay flowering include
heavy metal concentration (Brun et al. 2003; Ryser & Sauder
2006), nutrient depletion (Pigliucci et al. 1995; Stanton et al.
2000), high salinity (Van Zandt & Mopper 2002) and a his-
tory of invasive plant growth (Batten et al. 2007). Notably,
some species’ phenology may be more robust than others’ in
response to soil heterogeneity (Batten et al. 2007). In general,
such phenotypic plasticity has important ecological and evolu-
tionary consequences (Bradshaw 1965; Thompson 1991;
Miner et al. 2005; Richards et al. 2006; Ghalambor et al.
2007). For B. stricta in particular, phenological plasticity
affects the plants’ ability to time reproduction for optimal
seed set (Anderson et al. 2011). In fact, the exclusion of
natural soil microbiomes from growth chamber replicates of
that experiment might be partially responsible for the low
genetic correlation of flowering time in the field and in the
laboratory (Anderson et al. 2011). Interestingly, our data hint
that West genotypes may be more sensitive to soil microbiome
than East genotypes (P = 0.078; Fig. 1a, c; Table 1a), suggest-
ing intraspecific genetic variation for microbe-induced flower-
ing time plasticity. In contrast, the two subspecies show very
similar sensitivities to abiotic soil properties (Fig. 1d), indicat-
ing that flowering time plasticity to these two stimuli may
have different genetic bases.
Typically, selection analyses allow us to infer and compare

the adaptive value of particular traits in particular environ-
ments, but do not tell us why differential selection exists.

Table 2 Statistics for REML mixed models of reproductive fitness for (a) soil microbial community treatments and (b) sterilised field soil treatments.

(a) Soil microbial communities

(N = 439, Adj. R2 = 0.26)

(b) Sterilised field soils

(N = 331, Adj. R2 = 0.47)

d.f. F or v2 P d.f. F or v2 P

Treatment 3,86 2.123 0.1032 3,110 5.849 0.0010

Subspecies 1,69 7.351 0.0085 1,64 16.13 0.0002

Flowering time 1,403 0.009 0.9240 1,308 0.376 0.5399

Treatment 9 subspecies 3,97 2.053 0.1115 3,109 1.170 0.3247

Treatment 9 flowering time 3,246 3.489 0.0164* 3,305 1.552 0.2011

Genotype (ssp.) 2 13.79 <0.01 2 0.145 >0.05
Geno. (ssp.) 9 treatment 6 0.0 >0.05 6 4.081 >0.05
Block 1 0.0008 >0.05 1 0.130 >0.05
Elongation rate 1,376 0.0780 0.7801 1,300 0.1829 0.6692

Height at flowering 1,385 3.116 0.0783 1,298 0.1291 0.7196

Leaves per mm stem 1,381 15.03 0.0001 1,303 0.1157 0.7339

All effects are fixed except for Block, Genotype (ssp.) and Genotype (ssp.) 9 treatment. For fixed effects the test statistic F is reported. For random effects,

the reported test statistic is v2, calculated as twice the difference between log likelihoods of the full model and the model with the random factor excluded.

Note that in this model ‘flowering time’ reflects the selection gradient, i.e. direct selection on flowering time after controlling for selection on growth-related

covariates. A similar model without growth covariates revealed that the selection differential, i.e. a measure of combined direct and indirect selection on

flowering time, behaves similarly with respect to the flowering time 9 treatment interaction (Table S5). Parameter estimates are listed in Table S3. Bold type

indicates significance of at least P < 0.05. *Permutational ANOVA confirmed significance at P = 0.024.
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Here, we identified the soil microbiome as an agent of selec-
tion on flowering time in B. stricta (Figs. 2a, c). The evolu-
tionary relevance of this finding is best illustrated by
comparison with Anderson et al. (2011), who measured a

decrease in fecundity of 0.06 fruits per day to flowering
(> 4% of total mean fitness per day) in a typical B. stricta
habitat. Our results suggest that all else remaining constant, a
change in soil microbiome could increase or decrease that
selection differential by up to 0.07 fruits per day, or > 120%
(based on the magnitude of differential selection measured in
the PAR and SIL soil communities; Fig. 2a). The effects of
the soil microbiome on both flowering time and its adaptive
value may prove especially important in the context of conser-
vation and adaptation to global change, given that both
microbial communities and plant phenology are sensitive to
climate (Cleland et al. 2007; Castro et al. 2009).
Although we are not the first to report that soil biotas affect

flowering time (Lau & Lennon 2012) or selection on flowering
time (Lau & Lennon 2011), our experiment adds to previous
work in several unique ways. First, we used deep 16S rDNA
sequencing methods to greatly enhance our resolution of the
microbiome (Lundberg et al. 2013). Second, we described how
this type of microbiome data can be combined with experi-
mental phenotype data to determine which microbial taxa
influence traits of interest. Third, including a diverse set of
genotypes in the experiment allowed us to test for intraspecific
genetic variation for flowering time plasticity in response to
biotic and abiotic soil attributes, and link this ecological find-
ing to the field of evolutionary biology. Finally, we are the
first to use microbial communities from several undisturbed
field sites to confirm that naturally occurring variation in soil
microbes affects phenology and its adaptive value. We identi-
fied several taxa that are enriched or depleted in soils associ-
ated with fast flowering compared to slow flowering
(Tables 3b, S4); these groups are promising targets for future
study of the microbe-flowering time relationship.
As evolutionary biologists, a fundamental goal is to measure

selection and trait expression in the field because the genotype–
phenotype–fitness relationship is frequently context dependent
(Anderson et al. 2014). In particular, the true relationships
between plants and microbial communities may depend on
neighbouring plants (Berg & Smalla 2009) or on other soil
properties (van der Heijden et al. 2008). For instance, Lau &
Lennon (2012) found that the interaction between microbes and
soil moisture synergistically affects fitness (but not phenology)
in Brassica rapa. Factorial application of a wider sampling of
microbiomes and environmental variables – or, eventually,
direct manipulation of these variables in the field – would be
especially informative for understanding the ecological mecha-
nisms of plant–microbe interactions such as the flowering time
effect we observed in B. stricta. Nonetheless, we demonstrate
here that greenhouse experiments can reveal ecological interac-
tions that may have been extremely difficult to detect directly in
the field: all else remaining equal, natural differences in the soil
microbiome can influence plant phenology and patterns of
selection. This discovery required the isolation of soil
microbiota from the larger, more complex natural habitat.
Further environmental simplification – the reduction of the
microbiome into PCos and then specific OTUs – potentially
could reveal even more details of the relationship between geno-
type, phenotype and the microbial environment (Appendix S3).
Although in this experiment we lacked power to fully utilise this
method, it holds promise for future studies on the phenotypic

(b)

(c)

(a)

Figure 3 (a) Ordination of Bray–Curtis dissimilarities of rarefied microbial

abundances shows clustering of soil samples by field site of origin

(ADONIS P = 0.003), but not by collection year (ADONIS P = 0.56). (b)

Flowering time response of western genotypes (residuals, after controlling

for block effects, genetic differences and growth rate) to a gradient of soil

microbiome PCo2, a candidate predictor of flowering time. (c) Flowering

time response of western genotypes [residuals, as in (b)] to abundance of

candidate microbe OTU_96997, chosen for its high loading onto PCo2

(Table S6; Appendix S3).
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effects of the environmental microbiome. This approach is gen-
erally applicable to search for microbial community members
that alter biological characteristics of interest.
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Appendix S1. Descriptions of natural habitats used in this study. 
 

   
 

     
 
Clockwise, from top left: 
 
Jackass Meadow (JAM): high-altitude meadow on edge of pine forest (photo: J. 

Lipkowitz) 
 
Mahogany Valley (MAH): meadow between pine forest and sagebrush scrub (photo: J. 

Lipkowitz) 
 
Parker Meadow (PAR): high-altitude meadow in dead pine forest (burned 2007) (photo: 

M. Wagner) 
 
Silver Creek (SIL): lush, low-altitude pine forest adjacent to creek (photo: T. Mitchell-

Olds) 
 
 

Site Abbreviation Elevation (m) Latitude (°N) Longitude (°W) 

Silver Creek SIL 1812 44.90 114.40  
Parker Meadow PAR 2671 44.61 114.52 
Mahogany Valley MAH 2531 44.18 113.74 
Jackass Meadow JAM 2676 44.97 114.08 
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Appendix S2. Detailed methods. 
 
Soil sterilization and greenhouse experiment setup.  
Excesses of Fafard 4P (Conrad Fafard Inc., Agawam, MA, USA) and Metromix 200 (Sun 
Gro Horticulture Inc., Vancouver, BC, Canada) potting soils were autoclaved twice for 
90 min at 121°C, separated by a 24 h cooling period at room temperature. We loosely 
packed sterile Fafard 4P in the bottom three inches of 49-mL single-cell pots (Ray Leach 
Cone-tainers, Stuewe & Sons Inc., Tangent, OR, USA), and sterile Metromix 200 in the 
top inch. Pots were pre-washed with dish soap and SA-20 disinfectant (Southern 
Agricultural Insecticides Inc., Hendersonville, NC, USA). Field soils also were 
autoclaved twice for 90 min at 121°C, with a 24 h cooling period (at room temperature) 
between sterilizations, mixed with approximately ¼ volume of autoclaved perlite to 
improve drainage, and packed loosely into the same 49-mL single-cell pots. 
 
Surface sterilization of seeds. 
Seeds were surface sterilized using five washes: (1) vortexed one minute and inverted in 
70% ethanol with 0.1% Triton X-100, (2) vortexed, inverted, and soaked 15 minutes in 
10% bleach with 0.1% Triton X-100; (3-5) rinsed 3 times with sterile diH2O to remove 
bleach.  
 
Climate control for three stages of experiment. 
Seeds were germinated for one week in a growth chamber at 22°C under ambient relative 
humidity and 11-hour days. Plants were grown to adulthood in the greenhouse with 16-
hour days, photosynthetically active radiation maintained between 600 and 2000 
μmol/sec/cm2, daytime temperatures between 65°F and 70°F, nighttime temperatures 
between 55°F and 60°F, and relative humidity between 37% and 52%. Vernalization took 
place in a growth chamber at 4°C with 11-hour days and ambient relative humidity. After 
vernalization plants were allowed to flower and set fruit in the greenhouse with the same 
conditions as above. 
 
Justification of linear mixed model. 
We included three growth-related covariates in our models of flowering time and 
selection (Tables 1 and 2): elongation rate (mm/day), height at first flowering (mm), and 
number of leaves per mm stem. We acknowledge that in nature, the emergent phenotype 
(i.e. simply the observed speed to flowering, which has been influenced by environmental 
factors affecting growth) has great ecological and evolutionary relevance; for this reason 
we discuss both selection gradients and selection differentials on flowering time, and 
provide results from models without covariates in Supplementary tables. However, our 
question of whether soil microbiota affect flowering time per se is best answered by 
controlling for their effects on growth (which are already appreciated; van der Heijden et 
al. 2008), and therefore in the main text we report effect estimates from the original 
models including the covariates. 
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Appendix S3.  A method to search for microbial community 
members that affect a phenotype of interest. 
 
Problem: An experiment showed that qualitatively different environmental microbiomes 
alter a phenotype of interest, but the ultimate goal is to find specific organisms associated 
with the phenotypic effect. 
 
Approach:  

1. Sample environments for DNA extraction and 16S analysis. Ideally, each 
phenotyped individual would have its own 16S community measurement. Other 
possibilities include block-level sampling or (as in our experiment, see main text) 
one aggregate sample per microbiome treatment. 

2. Principal coordinate analysis provides a quantitative summary of the 
microbiome; each individual PCo describes a different component of the 
community measured in each sample. 

3. For a more focused test, identify candidate PCo(s). In our case, we chose the 
PCo that separated the treatments that caused the phenotypic extremes in our 
experiment, and ignored the others. 

4. Test for a correlation between the candidate PCo(s) and the phenotype. If 
you measured the microbiome for each individual, the PCo value can be 
substituted directly into a full linear model where the qualitative “Treatment” 
would have been: e.g. PHENOTYPE = SUBSPECIES + TREATMENT + SUBSPECIES × 
TREATMENT would become PHENOTYPE = SUBSPECIES + PCO1 + PCO2 + 
SUBSPECIES × PCO1 + SUBSPECIES × PCO2 . If you pooled microbiome samples, 
e.g. one microbiome measured per block, regress the mean phenotype in each 
block onto the block’s values of candidate PCo(s). To account for individual-level 
covariates (e.g. genotype), use phenotype residuals as the response variable. 

5. Identify OTUs with strong associations to the candidate PCo. Like each 
environmental sample, each OTU has a score or loading on each PCo. Choose a 
subset of OTUs with high loadings on your most promising candidate PCo. 

6. Test for a correlation between the candidate OTU(s) and the phenotype. See 
step #4 above: the abundance of the candidate OTU is analogous to the candidate 
PCo score. Note, however, that unlike PCoA axes, OTUs are likely to be 
multicollinear and therefore may need to be tested one at a time in separate 
models; significance should then be corrected for multiple comparisons. 

7. To search for broader taxa associated with the phenotype, compare relative 
abundances of phyla, classes, orders, or families between environmental samples 
associated with phenotypic extremes. Alternatively or in addition, test for a 
correlation between the phenotype and relative abundance of a candidate taxon 
(analogous to steps #4 and #6, above). 
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Table S1  List of Boechera stricta genotypes, collection locations, and subspecies  
Genotype Abbrev Elev (m) Lat (°N) Lon (°W) Subsp 
Alder Creek ALD 2130 44.806650 114.270633 W 
Alder Creek Upper ALU 2174 44.803733 114.276483 W 
Bayhorse Meadow BHM 2465 44.406000 114.381150 W 
Bayhorse Saddle BHS 2650 44.410000 114.407733 E 
Bannock BNK 2493 44.791000 113.312550 E 
Bearskin Creek BSC 1965 44.416000 115.470300 W 
Bear Valley Creek BVC 1948 44.411000 115.372000 W 
Bear Valley Meadow BVM 2087 44.795000 113.782150 W 
Coiner Prairie COI 2003 45.156395 114.151722 W 
Cold Canyon COL 2373 43.839000 114.294667 E 
Deep Creek Ridge DCR 2123 45.118533 114.158433 W 
Deadwood DDW 2028 44.296000 115.479867 W 
Double Springs Pass North DSP 2582 44.231633 113.838117 E 
Eagle Mountain EAG 2210 45.541000 113.826533 E 
East Creek Middle Fork ECM 2647 44.536000 112.617967 E 
Elkhorn ELK 1975 46.268000 111.927467 W 
Floodplain Forest FPF 2138 44.797000 113.798217 E 
Gibbons Pass Road GIB 1960 45.679000 113.832767 W 
Grand Prize Trailhead GPT 2351 43.937000 114.690367 E 
Humphrey Crest HUM 2156 44.523000 112.192450 E 
Iron Flats IRF 1880 44.941000 114.121100 W 
Jackass Meadow JAM 2691 44.966883 114.085250 E 
Jordan Creek Upper JCU 2333 44.457000 114.752883 E 
Lost Trail Meadow LTM 2462 45.705182 113.988730 W 
Mahogany Camp MAH 2526 44.182000 113.739383 E 
Middle Fork Peak MFP 2758 44.963000 114.655767 E 
Mill Creek MIL 2259 44.367000 113.356783 E 
Mono Creek MON 2112 45.534000 113.080017 W 
Moonrise Ridge MRR 2673 44.642000 114.528967 E 
Napoleon Hill NAP 2282 45.336000 114.003917 W 
Pass Creek South PCS 2319 44.027000 113.452950 E 
Pintler Creek PIN 1933 45.853000 113.438500 E 
Pioneer Creek PIO 2040 45.551000 113.774233 W 
Parker Meadow ‘A’ PMA 2681 44.616000 114.518433 E 
Parker Meadow ‘B’ PMB 2681 44.616000 114.518433 E 
Ruby Creek RUB 2026 45.546700 113.763200 W 
Sagebrush Meadow SBM 2444 44.426000 112.894467 E 
Seafoam SEA 2053 44.444000 115.089333 W 
Silver Creek Upper SIL 1843 44.912000 114.386600 W 
Sleeping Deer SLD 2848 44.754000 114.679383 E 
Taylor River SAD 2517 38.707000 106.804483 E 
Thatcher THA 2017 44.366000 115.143483 W 
Twelve Mile TWM 2071 44.941000 113.847400 E 
Twin Saddle TWS 2834 44.622000 114.496833 E 
Van Horn VAN 2014 44.406000 115.285750 W 
Whiskey Creek WHC 2061 44.569783 115.541883 W 
Whitehawk WHH 2027 44.288000 115.481333 W 
Yellowjacket YWJ 1794 44.965000 114.602050 W 
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Figure S1  Principal components analysis of correlations between 12 physical and chemical 
properties of the eight soil treatments. “Microbial” samples consisted of sterilized potting soil 
inoculated with soil microbiota extracted from one of four natural soils; “abiotic” samples were 
autoclaved natural soils. Unplanted soil controls (8 per treatment) were collected the day after the 
end of the experiment, pooled, and submitted for analysis at the Texas A&M Soil, Water, and 
Forage Testing Laboratory (College Station, TX, USA). (a) Summary plot showing partitioning 
of soil variation into twelve axes. (b) Principal components plot showing separation of soil 
treatments along two major axes of variation, which explain 58.7% (horizontal axis) and 22.4% 
(vertical axis) of total variation respectively. (c) Contributions of 12 soil properties to the first two 
principal components 
 
 
Table S2  Chemical and physical properties of soil treatments at end of experiment. Unplanted 
soil controls (8 per treatment) were collected the day after the end of the experiment, pooled, and 
submitted for analysis at the Texas A&M Soil, Water, and Forage Testing Laboratory (College 
Station, TX, USA). All units are ppm with the exceptions of pH (unitless). Due to the small 
volume of treated soils available for nutrient analysis, we could not perform the replicate tests 
needed to statistically test for differences between soils. 

(a) Potting soil inoculated with soil microbiota 

 pH NO3-
N 

P K Ca Mg S Na Fe Zn Mn Cu 

JAM 6.8 37 16 79 1096 575 174 26 12.2 0.5 8.5 0.79 
MAH 6.9 29 15 73 1027 547 114 20 10.3 0.6 9.8 0.59 
PAR 6.8 51 16 67 940 543 170 29 13.5 0.6 7.9 1.00 
SIL 6.8 47 13 70 1130 561 298 27 13.2 0.5 8.8 1.06 
var .002 99 2 26 7044 212 6031 15 2.1 0.003 0.63 0.05 

(b) Sterilized field soils 

 pH NO3-
N 

P K Ca Mg S Na Fe Zn Mn Cu 

JAM 6.8 36 76 535 1350 173 10 21 22.6 0.6 112.6 0.11 
MAH 7 57 69 285 2402 306 13 11 41.6 5.1 108.6 0.41 
PAR 6.5 12 108 251 1407 98 9 16 29.8 1.1 55.0 0.20 
SIL 6.6 8 36 633 1257 134 8 28 24.7 5.6 119.3 0.17 
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var .05 520 872 35078 286846 8248 5 53 72.3 6.8 875.0 0.02 
 
 
Table S3 Parameter estimates and standard errors for mixed models of flowering time 
(FLT) and fruit number (FRN) in response to biotic and abiotic soil treatments. Reported 
values are least square means unless otherwise noted. Flowering time units are days after 
vernalization; height units are mm; fecundity measured as number of fruits 

Model:  FLTbiotic 
(Table 1a) 

 FLTabiotic 
(Table 1b) 

 FRNbiotic 
(Table 2a) 

 FRNabiotic 
(Table 2b) 

Term:  Est. StdEr  Est. StdEr  Est. StdEr  Est. StdEr 
Intercept  31.91 1.45  30.84 1.34  0.504 0.61  2.350 0.86 
Subspecies: E  34.22 0.80  34.92 0.56  2.162 0.17  1.837 0.20 
Subspecies: W  37.50 0.87  35.16 0.64  2.917 0.19  3.110 0.23 
Treatment: JAM  34.83 0.68  35.75 0.61  2.558 0.15  2.702 0.24 
Treatment: MAH  36.98 0.67  33.74 0.59  2.329 0.15  3.200 0.22 
Treatment: PAR  35.57 0.69  37.14 0.95  2.728 0.15  1.362 0.38 
Treatment: SIL  36.07 0.66  33.52 0.59  2.543 0.14  2.630 0.23 
T×S: JAM×E  34.05 0.95  35.91 0.90  2.122 0.22  2.132 0.37 
T×S: MAH×E  34.55 0.93  33.61 0.78  2.217 0.21  2.259 0.30 
T×S: PAR×E  34.00 0.99  37.04 1.12  2.295 0.24  1.146 0.44 
T×S: SIL×E  34.29 0.94  33.10 0.78  2.015 0.22  1.812 0.32 
T×S: JAM×W  35.61 1.06  35.60 0.82  2.994 0.24  3.273 0.32 
T×S: MAH×W  39.41 1.07  33.87 0.89  2.441 0.26  4.141 0.35 
T×S: PAR×W  37.14 1.03  37.25 1.51  3.161 0.23  1.578 0.61 
T×S: SIL×W  37.85 1.01  33.93 0.86  3.070 0.23  3.448 0.33 
Genotype(Subsp) 

* 
 34.50 8.97  5.654 4.99  20.38 6.17  2.594 5.06 

Geno(Ssp) × T *  0.000 4.23  4.720 7.60  0.000 4.03  19.38 8.64 
Block *  0.340 0.93  2.170 2.49  0.052 0.80  0.705 1.80 
Flowering time †        0.001 0.02  -

0.013 
0.02 

JAM × fl. time †        0.013 0.01  -
0.043 

0.02 

MAH × fl. time †        0.006 0.01  0.031 0.02 
PAR × fl. time †        0.026 0.01  0.006 0.03 
SIL × fl. time †        -

0.045 
0.01  0.006 0.02 

Elongation rate †  -
11.14 

0.64  -
17.62 

0.95  0.107 0.38  0.246 0.58 

Hgt at flowering †  0.365 0.02  0.579 0.03  0.022 0.01  0.007 0.02 
Leaves/mm stem 

† 
 4.425 1.11  5.346 1.16  1.156 0.30  -

0.152 
0.48 

* Random effect; reported values are percent variation explained 
† Continuous effect; reported values are linear coefficients 
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Table S4  Statistics for REML mixed models of flowering time for (a) soil microbial community 
treatments and (b) sterilized field soil treatments, without controlling for growth-related 
covariates. All effects are fixed except for Block, Genotype(Subspecies), and Genotype(Subsp.) × 
Treatment. For fixed effects the test statistic F is reported. For random effects, the test statistic χ2 

is reported, calculated as twice the difference between log likelihoods of the full model and the 
model with the random factor excluded. Compare with statistics for model including growth-
related covariates, Table 1 
  (a) Soil microbial communities  

(N = 451, Adj. R2=0.60) 
 

 

(b) Sterilized field soils 
(N = 336, Adj. R2=0.43) 

  d.f.  F or χ2  P  d.f.  F or χ2  P 

Treatment  3,101  3.5301  0.0176  3,74  8.8807  <0.0001 
Subspecies  1,44  28.997  <0.0001  1,47  18.251  <0.0001 
Treatment × 

Subspecies 
 3,102  2.3039  0.0814  3,74  1.4615  0.2320 

Genotype (Subspecies)  2  72.383  <0.00001  2  23.181  <0.0001 
Geno.(Ssp.) × 

Treatment 
 6  0.2579  >0.05  6  0  1 

Block  1  0.4299  >0.05  1  0.4352  >0.05 
Bold type indicates significance of at least P<0.05 
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Table S5   Statistics for REML mixed models of reproductive fitness for (a) soil microbial 
community treatments and (b) sterilized field soil treatments, without controlling for selection on 
growth-related covariates. All effects are fixed except for Block, Genotype(Subspecies), and 
Genotype(Subsp.) × Treatment. For fixed effects the test statistic F is reported. For random 
effects, the reported test statistic is χ2, calculated as twice the difference between log likelihoods 
of the full model and the model with the random factor excluded. Note that in this model 
“flowering time” reflects the selection differential, i.e. both direct selection on flowering time and 
indirect selection on correlated traits. Compare with statistics for selection gradient on flowering 
time, Table 2 
  (a) Soil microbial communities  

(N = 439, Adj. R2=0.26) 
 

 

(b) Sterilized field soils  
(N = 331, Adj. R2=0.48) 

  d.f.  F or χ2  P  d.f.  F or χ2  P 

Treatment  3,83  1.3281  0.2708  3,100  6.5986  0.0004 
Subspecies  1,48  6.5373  0.0138  1,58  7.5059  0.0082 
Flowering time  1,405  0.1111  0.7391  1,313  6.4731  0.0114 
Treatment × 

Subspecies 
 3,93  1.4695  0.2280  3,105  0.8088  0.4917 

Treatment × Fl. time  3,249  2.8348  0.0388  3,301  1.6838  0.1705 
Genotype 

(Subspecies) 
 2  43.601  < 0.0001  2  4.0324  >0.05 

Geno.(Ssp.) × 
Treatment 

 6  0  1  6  5.9867  >0.05 

Block  1  0  1  1  0.3349  >0.05 
Bold type indicates significance of at least P<0.05 
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Figure S2  Rarefaction curves to 40,000 sequences (16S rDNA sequences that could be 
assigned to a reproducible OTU; see main text for details) for all 24 field soil samples. 
Alpha diversity was estimated using Shannon’s diversity index. 
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Figure S3  Scree plot of microbiome principal coordinates analysis 
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Figure S4  Relative abundances of the dominant families within the four most abundant 
phyla (a) Proteobacteria, (b) Acidobacteria, (c) Verrucomicrobia, and (d) Actinobacteria 
in four natural soil communities (pooled samples within sites) and in the top 5% of OTUs 
most highly correlated with PCo2, a putative predictor of flowering time. All remaining 
families were pooled into the category “Low abundance.” Raw OTU abundances were 
corrected for 16S gene copy number variation. 
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Table S6  The ten OTUs with highest correlations with PCo2; their correlations with PCo2; their 
taxonomic designation at lowest level of classification; estimates of their direct effect on 
flowering time; P values of direct effects and Benjamini-Hochberg false discovery rate-corrected 
P values. Estimates and statistics are from a linear regression of mean flowering time residuals of 
western genotypes in each treatment after controlling for block effects, genetic differences, and 
continuous covariates elongation rate (mm/day), height at first flowering (mm), and leaves per 
mm stem. The units of the parameter estimates are days per OTU representative in a community 
rarefied to 40,000 sequences, corrected for 16S gene copy number variation  

  PCo2 
Score 

 Taxonomic designation  Est.  
(days/ind.) 

 P  PFDR 

OTU211  0.604  Chthoniobacteraceae  -0.00007  0.99  0.99 
OTU240  0.335  Gaiellaceae  0.0028  0.74  0.88 
OTU558  0.206  Chloracidobacteria order RB41  0.0035  0.79  0.88 
OTU744  0.155  Chloroflexi class Gitt-GS-136  0.0201  0.31  0.53 
OTU1735  0.147  Bacillales  0.0732  0.22  0.53 
OTU35562  0.153  Gemmatimonadetes N1423WL  0.0097  0.32  0.53 
OTU47051  0.405  Chloroflexi Ellin6529  0.0092  0.18  0.53 
OTU86905  0.145  Bacillaceae  0.0877  0.13  0.53 
OTU96997  0.224  Hyphomicrobiaceae  0.0182  0.037  0.37 
OTU99474  -0.356  Chthoniobacteraceae  -0.0024  0.39  0.57 

Bold type indicates significance of at least P<0.05 
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Table S7   Comparison of copy number-adjusted relative abundances of major families in the 
four dominant phyla between slow-flowering MAH and late-flowering JAM soils. Significance of 
enrichment/depletion was determined by Wilcoxon Rank Sum tests and adjusted using the 
Benjamini-Hochberg false discovery rate 
 

Phylum Family  JAM  MAH  PFDR 

Proteobacteria Bradyrhizobiaceae  9.3%  13.0%  0.053 
Proteobacteria Hyphomicrobiaceae  14.2%  16.7%  0.33 
Proteobacteria Sphingomonadaceae  9.9%  6.9%  0.28 
Proteobacteria Betaproteobacteria.uncl  4.7%  4.9%  0.86 
Proteobacteria Order.A21b.EB1003  7.7%  5.5%  0.48 
Proteobacteria Sinobacteraceae  3.1%  3.6%  0.33 
Proteobacteria Order.SC-I-84.uncl  3.0%  3.6%  0.48 
Proteobacteria Myxococcales.uncl  2.0%  2.9%  0.040 
Proteobacteria Order.Ellin329.uncl  2.2%  2.3%  1 
Acidobacteria Order.iii1-15.uncl  6.7%  14.4%  0.20 
Acidobacteria Koribacteraceae  36.3%  13.6%  0.004 
Acidobacteria Order.RB41.uncl  20.7%  24.1%  0.10 
Acidobacteria Solibacteraceae  80%  5.8%  0.040 
Acidobacteria Solibacterales.uncl  6.0%  6.4%  0.38 
Acidobacteria Order.RB41.Ellin6075  3.1%  3.5%  0.56 
Acidobacteria Acidobacteriaceae  2.0%  3.0%  0.62 
Acidobacteria Acidobacteria-5.uncl  1.1%  2.6%  0.004 
Acidobacteria Order.Ellin6513.uncl  3.0%  4.5%  0.08 
Verrucomicrobia Chthoniobacteraceae  81.4%  83.4%  0.70 
Verrucomicrobia Pedosphaerales.uncl  5.7%  5.6%  0.62 
Verrucomicrobia Pedosphaerales.Ellin515  4.9%  2.3%  0.005 
Verrucomicrobia Opitutaceae  2.9%  4.7%  0.040 
Verrucomicrobia Pedosphaerales.auto67_4W  0.25%  1.3%  0.004 
Verrucomicrobia Pedosphaerales.Ellin517  1.5%  0.64%  0.031 
Verrucomicrobia Pedosphaerales.other  2.5%  0.50%  0.004 
Verrucomicrobia Verrucomicrobiaceae  0.27%  0.64%  0.031 
Verrucomicrobia Verrucomicrobia.other  0.03%  0.15%  0.005 
Actinobacteria Gaiellaceae  16.8%  17.5%  0.62 
Actinobacteria Solirubrobacterales.uncl  17.3%  14.7%  0.040 
Actinobacteria Nocardioidaceae  3.5%  4.0%  0.62 
Actinobacteria Order.0319-7L14.uncl  6.3%  4.3%  0.10 
Actinobacteria Acidimicrobiales.EB1017  1.4%  4.6%  0.004 
Actinobacteria Solirubrobacteraceae  2.9%  5.6%  0.004 
Actinobacteria Acidimicrobiales.uncl  3.8%  4.0%  0.38 
Actinobacteria Mycobacteriaceae  2.3%  3.1%  0.031 
Actinobacteria Microbacteriaceae  3.0%  3.1%  0.86 

Bold type indicates significance of at least P<0.05 
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