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A new eye on NLR proteins: focused on clarity or
diffused by complexity?
Vera Bonardi1, Karen Cherkis1,3, Marc T Nishimura1 and
Jeffery L Dangl1,2,3,4,5

The nucleotide-binding domain leucine-rich repeat proteins

(NLRs) represent the major class of intracellular innate immune

receptors in plants and animals. Understanding their functions

is a major challenge in immunology. This review highlights

recent efforts toward elucidating NLR functions in human and

plants. We compare unconventional aspects of NLR proteins

across the two kingdoms. We review recent advances

describing P-loop independent activation, nuclear-cytoplasmic

trafficking, oligomerization and multimerization requirements

for signaling, and for expanded functions beyond pathogen

recognition by several NLR proteins.

Addresses
1 Department of Biology, University of North Carolina, Chapel Hill,

NC 27599-3280, USA
2 Howard Hughes Medical Institute, Chapel Hill, NC 27599-3280, USA
3 Curriculum in Genetics and Molecular Biology, University of North

Carolina, Chapel Hill, NC 27599-3280, USA
4 Department of Microbiology and Immunology, University of North

Carolina, Chapel Hill, NC 27599-3280, USA
5 Carolina Center for Genome Sciences, University of North Carolina,

Chapel Hill, NC 27599-3280, USA

Corresponding author: Dangl, Jeffery L (dangl@email.unc.edu)

Current Opinion in Immunology 2012, 24:41–50

This review comes from a themed issue on

Innate immunity

Edited by Guido Kroemer and Alexander Tarakhovsky

Available online 3rd February 2012

0952-7915/$ – see front matter

# 2012 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.coi.2011.12.006

Introduction
Plants and animals are exposed to a wide array of infec-

tious agents. In both cases, the host–pathogen interaction

involves recognition of non-self by the host immune

system, amplification of immune responses, and eventual

attenuation or elimination of the pathogen. Host–
pathogen interactions are dynamic liaisons in which the

two partners influence each other’s evolution.

Plants lack an adaptive immune system and rely solely on

their innate immune system to counteract infection. Per-

ception of non-self molecules in plants occurs in two

different layers. In the first, microbe-associated molecular

patterns (MAMPs) conserved within a class of microbe are

recognized by polymorphic plasma membrane-spanning

pattern recognition receptors (PRRs), typically character-

ized by an extracellular domain with LRR or lysine motifs,

and MAMP-triggered immunity (MTI) ensues [1,2].

Pathogens evolved effector molecules to counteract host

surveillance and suppress MTI. In response, plants

evolved a second layer of defense that utilizes effector-

specific intracellular NLR receptors that are activated to

trigger effector-triggered immunity (ETI).

Similarly, animals employ a limited repertoire of PRRs to

recognize MAMPs or endogenous molecules that result

from pathogen invasion, referred to as damage-associated

molecular patterns (DAMPs), resulting in inflammatory

signaling [3]. Animal PRRs include Toll-like receptors

(TLRs), C-type lectin receptors (CLRs), retinoic acid-

inducible gene (RIG)-I-like receptors (RLRs), and, the

topic of this review, NLRs [4].

Plant NLRs either directly recognize specific effectors, or

indirectly through the action of an effector on a host target

(modification of self). The repertoire of plant NLRs is large

(�160 in Arabidopsis [5�]) and highly polymorphic. The

smaller number of animal NLR genes, �20 in mammals

[6], recognizes MAMPs or modified-self in the form of

DAMPs. As in plants, animal NLRs likely recognize bac-

terial ligands through direct and specific interaction [7��].
Despite structural and, at least superficially, functional

similarity, plant and animal NLRs are proposed to have

evolved independently with convergent function [8].

Despite the lack of NLRs in the Caenorhabditis elegans
and drosophila genomes [6], these proteins show a remark-

able expansion to over 200 genes in sea urchin [9].

NLRs as molecular switches: STANDard and
unconventional routes of activation
NLR proteins belong to the signal transduction ATPases

with numerous domains (STAND) subclade of the AAA-

ATPase superfamily. They are characterized by a cen-

trally located nucleotide-binding domain, a variable num-

ber of highly polymorphic C-terminal leucine-rich repeats

(LRRs), and diverse N-termini (Figure 1). STAND

proteins are molecular switches regulated via nucleo-

tide-binding [10,11]. The ADP-bound form represents

the resting ‘off’ state. Upon pathogen recognition, a

conformational change allows ADP to be exchanged for

ATP, and the active ‘on’ state initiates downstream

signaling. ATP hydrolysis is the core mechanism that
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regulates this switch and ensures return to the inactive

state (Figure 2). Direct nucleotide binding to STAND

proteins has been demonstrated for only a few NLR

proteins [12�,13–18]. The highly conserved Walker-A

(or P-loop) motif (GxxxxGK[T/S]) is an integral part of

the nucleotide-binding site and the lysine residue is

crucial for the coordination of the nucleotide b-phos-

phate. The Walker-B (hhhDD/E), or an extended

Walker-B motif (DGhDE) in the case of most animal

NLRs, is also common [19]. In the conventional Walker-

B, the first aspartate residue coordinates the Mg2+ cation

and is required for nucleotide binding, whereas the sec-

ond acidic residue is thought to prime a water molecule

for nucleotide hydrolysis [20].

The importance of nucleotide binding for plant NLR

activation is reflected by the auto-activation phenotypes

caused by several missense mutations in the moderately

conserved, plant-specific MHD motif in the NB domain

[19]. The precise effects of such mutations in nucleotide

binding are largely unknown. Animal NLRs do not con-

tain an MHD motif, but a functionally conserved histi-

dine is part of the corresponding WH domain, and this

motif is required to coordinate the b-phosphate of the

nucleotide in the binding pocket [21]. Biochemical

analysis of an MHD mutation (D555V) in the flax M

NLR protein revealed that the auto-activation phenotype

is due to increased ATP binding [12�], suggesting either:

(i) a conformational change in the NLR protein that

favors ATP binding versus ADP binding; or (ii) a reduced

ATPase activity that prevents the protein from switching

back into an inactive state.

A more complex activation/deactivation mechanism

characterizes mammalian Nod1 and Nod2 NLRs, which

recognize bacterial peptidoglycan (PGN). In these cases

indirect elicitor recognition likely induces oligomerization,

an essential step for subsequent signaling. Nod1 and Nod2

employ different mechanisms of activation. While an

initial ATP hydrolysis step mediated by the first acidic

residue of the extended Walker-B DE motif is necessary

for both Nod1 and Nod2 activation, Nod2, but not Nod1,

requires an additional ATP hydrolysis event mediated by

the second acidic residue for deactivation of the signaling

platform [22�].

Natural NLR variants provide evidence for unconven-

tional activation mechanisms. A genetic study in rice

showed that the panicle blast-resistance gene Pb1 encodes

an unconventional NLR protein [23��] that contains two

N-terminal CC domains, a degenerate NB domain that

completely lacks the P-loop motif, and a C-terminal LRR

domain. This unique structure indicates either that Pb1

lost its nucleotide-binding activity, and thus that activation

does not conform to the traditional molecular switch, or

that nucleotide-binding is achieved differently, potentially

mediated by an insertion of 30 amino acids found within

the Walker-B motif. The small Pb1 NLR family from rice

shares the P-loop deletion and the insertion in the Walker-

B, and these features seem conserved in maize.

An alternative model for NLR activation for at least some

phenotypes was substantiated for the Arabidopsis ADR1

(activated disease resistance 1) family of CC-NLRs

[24��]. Three members of this family (ADR1, ADR1-

L1, and ADR1-L2) function additively as ‘helper NB-

LRRs’ to transduce signals subsequent to specific NLR

receptor activation during effector-triggered immunity,

and they are required for basal defense against virulent

pathogens. The ADR1 proteins are also required for

accumulation of the phytohormone salicylic acid (SA),

an essential signaling molecule for plant immune

42 Innate immunity
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Architecture of NLR proteins. Domain organization of (a) plant NLRs and (b) animal NLRs is depicted and representative members of each category are

shown. (c) The conserved domains of NLR proteins are represented. N-terminal coiled-coil (CC) and Toll/interleukin-1 (TIR) and C-terminal WRKY

domains are specific to plants, whereas N-terminal baculoviral inhibitory repeat (BIR) domain, caspase recruitment domain (CARD), pyrin domain

(PYD), activation domain (AD), and undefined domains are specific to animals.
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responses, following challenge with MAMPs encoded by

a disarmed bacterial pathogen. Remarkably, in the case of

ADR1-L2, none of these three phenotypes requires an

intact P-loop motif, as a triple missense allele in three

invariant residues (GKT > AAA) required for ATP bind-

ing retains function [24��].

Interestingly, a number of full-length and truncated NLR

genes in Arabidopsis thaliana and A. lyrata could encode

proteins that either possess a degenerate P-loop motif or

completely lack the P-loop motif, analogous to rice Pb1

(Table 1). We propose that these proteins can act as

scaffolds for interactions with as yet unknown immune

A new eye on NLR proteins: focusing on clarity or complexity? Bonardi et al. 43

Figure 2
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Model for activation of plant NLR proteins. (a and b) NLRs are normally in an ‘off’ state that is achieved by the inhibitory function of the LRR domain

preventing the protein activation via the NB molecular switch. The NLR can either be a dimer (MLA10) or a monomer (L6) before activation. NLR

proteins can recognize the effector protein directly through the LRR domain (a), or through modifications of the host target of an effector that typically

interacts with the NLR N-terminal domain (b). Recognition of the pathogen effector triggers the release of the inhibitory LRR domain and this

conformational change allows for exchange of ADP to ATP. Binding of ATP results in a second conformational change that allows the N-terminal

domains to physically interact, thus activating the NLR. Based on the dimerization of NOD1 through the CARD domains, this mechanism is likely to be

conserved in animal NLRs. (c) When a P-loop is not required for NLR function, we propose that the NLR is activated by an oxidative burst resulting

from either NLR-mediated or PRR-mediated effector-dependent or MAMP-dependent recognition. Unconventional NLRs could function as scaffolds

for interactions with unknown partners. Heterotypic or homotypic interactions with accessory proteins or other NLRs could result in the activation of

downstream signaling which leads to ETI, MTI, and basal defense.
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function partners, as proposed for ADR1 and Pb1

(Figure 2). Such scaffolds could function as signalosomes

required for downstream output responses, potentially as

regulatory partners for more conventional nucleotide-bind-

ing NLRs. This is reminiscent of some human NLRs that

can regulate signal transduction pathways either instead of,

or in addition to, their function as microbial sensor [25�].

Together we STAND, divided we fall
To prevent inappropriate activation and unnecessary

damage, NLRs are under exquisite control. NLRs exist

in an inactive state that relies on negative regulation

exerted by the LRR on the NB domain [21,26–28].

Several reports indicate that pathogen recognition

releases this auto-inhibition leading to activation of down-

stream signaling [27,29–32]. Global reduction of NLR

stability via mutation of the RAR1 co-chaperone, reduces

basal defense against virulent pathogens [33], suggesting

that NLRs collectively cycle slowly between active and

inactive states at a basal level, and that this sets the

constitutive or primed basal defense output [34].

In animals, activation of NLRs can result in multimeriza-

tion and the formation of a molecular scaffold that recruits

additional components required for signaling [7��]. The

crystal structure of the NLR-related CED-4 apoptosome

reveals a homo-octomeric funnel-shaped structure [35],

similarly electron microscopy data suggest the existence

of the Apaf-1 apoptosome as a disc-shaped homo-heptamer

[36].

The NLR proteins NLRP3, NLRP1, and NLRC4

undergo homomerization and heteromerization with

additional proteins to form a scaffold for the recruitment

44 Innate immunity

Table 1

Unconventional P-loop motifs in full-length and truncated NLRs in Arabidopsis thaliana and A. lyrata.a

Species Protein ID # P-loop motif Architecture

Arabidopsis thaliana At1g17615 AxxxxGRS TIR-NB

At1g72890 GxxxxGRS

At1g72910 AxxxxGRS

At1g72920 AxxxxGRS

At1g72940 AxxxxGRS

At1g72950 AxxxxGRS

Arabidopsis thaliana At1g72900 GxxxxCRS TIR-NB

Arabidopsis thaliana At1g57650 No consensus NB-LRR

Arabidopsis lyrata 860345 SxxxxGGS TIR-NB-LRR

Arabidopsis lyrata 865712 GxxxxGVA TIR-NB-LRR

Arabidopsis lyrata 882156 GxxxxGRG TIR-NB-LRR

Arabidopsis lyrata 916973 GxxxxGKA TIR-NB-LRR

Arabidopsis lyrata 875509 No consensus TIR-NB-LRR

877022

886387

916966

Arabidopsis lyrata 880060 AxxxxGRS TIR-NB

877388 GxxxxGRS

877391 AxxxxGRS

877392 AxxxxGRS

877393 AxxxxGRS

Arabidopsis lyrata 471970 No consensus TIR-NB

Arabidopsis lyrata 888983 No consensus CC-NB-LRR

Arabidopsis lyrata 856364 No consensus CC-NB

Arabidopsis lyrata 874617 GxxxxGVA NB-LRR

Arabidopsis lyrata 497514 No consensus NB-LRR

856232

883426

Arabidopsis lyrata 856467 No consensus NB

863489

875983

883439

a NLRs were identified in the Arabidopsis thaliana (171 NLRs) and A. lyrata (185 NLRs) genomes based on database annotation and previous reports

[5�,78]. Motif alignments were created with MEME using full-length sequences and predicted P-loop motifs were hand curated.
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and activation of procaspase-1 [37,38]. Moreover,

heteromerization of NLRC4 with either NAIP2 or NAIP5

is required for inflammasome specificity in response to

direct recognition of bacterial ligands (PrgJ and flagellin

respectively) [7��,39��].

Homodimerization is also inferred to be an essential step

for plant NLR activation from co-immunoprecipitation of

differentially tagged molecules [28,40,41]. Whether this

is biologically relevant for function remains elusive. The

N-termini of the barley CC-NLR MLA10 [42��] and of

the flax TIR-NLR L6 [43��] were crystallized and struc-

tural analysis combined with mutagenesis confirmed

homotypic dimer association for the respective N-term-

inal domains. Interestingly, loss-of-function mutations in

other plant TIR-NLRs correspond to residues located on

the L6 dimer interface, suggesting that homodimerization

is also essential in these cases [43��].

Over-expression of the TIR domains of a number of plant

NLRs can result in cell death, and this is interpreted to

reflect ectopic activation [43��,44–46]. Over-expression of

the CC domain of N-required gene 1 (NRG1), ADR1s

[47�], or MLA10 [42��] all result in similar ectopic cell

death phenotypes. NRG1 and ADR1 are both members of

a rare class of divergent CCR-NLRs (previously CCRPW8)

[47�] that lack the conserved EDVID motif thought to

regulate intra-molecular interactions between the CC

domain and the NB-LRR [48]. CCR-NLRs are ancient

and conserved among flowering plants. The common

evolution history of NRG1 and ADR1, and their ‘helper

functions’ [24��,49] suggest that NRG1 might also act in a

P-loop independent fashion. Transient over-expression of

their respective CCR domains is sufficient to induce HR

responses. However, this is not a unique feature of CCR

proteins, since over-expression of the canonical MLA10

CC domain is also sufficient to trigger cell death [42��].

Unconventional functions of NLRs
As more reports on NLR protein function emerge, com-

mon features of activation appear less evident. Diver-

gence in the mechanism of NLR is also reflected by novel

functions beyond pathogen recognition. Functions for

human NLRs in processes unrelated to pathogen detec-

tion have been reviewed [25�].

Interestingly, the NLR homolog Kaposi’s sarcoma-associ-

ated herpesvirus Orf63 [50�] shares homology with the

NB and the LRR domains of human NLRP1, but lacks

either the CARD or the PYD domain. Orf63 protein

interacts with and subverts NLRP1 and NLRP3 inflam-

masomes [50�], perhaps because it lacks an N-terminal

signaling domain and inhibits NLR multimerization.

This observation is reminiscent of bacterial TIR

domains. TIR-containing proteins TlpA, TcpB, TcpC,

and Btp1 from a range of pathogenic bacteria interfere

with host TLR signaling and immune responses [51–53].

Interestingly, the phylogeny of the bacterial TIR

domains is not congruent with the respective bacterial

genome phylogeny, indicating that the bacterial TIR

domains have spread via horizontal gene transfer [54].

NLR activation in plants typically results in a localized

form of cell death around the infection site, known as

hypersensitive response (HR). Arabidopsis lesion simu-

lating disease 1 (lsd1) and accelerated cell death 11 (acd11)

loss-of-function mutants are characterized by the consti-

tutive activation of immune responses in the absence of

an invader [55,56]. In lsd1 and acd11, programmed cell

death is initiated but cannot be contained. Both lsd1 and

acd11 phenotypes are associated with uncontrolled

accumulation of SA, as mutations in the SA biosynthetic

enzyme SID2 in these backgrounds suppresses cell death

[57,58]. The CCR-NLR ADR1-L2 and the TIR-NLR

LAZ5 function as positive regulators of lsd1 and acd11 cell

death respectively [24��,59��], suggesting that the ectopic

cell death phenotypes of acd11 and lsd1 are a result of the

inappropriate activation of NLR proteins.

Set the control
Aberrant responses following inappropriate activation of

the NLR receptors are common to animals and plants.

Many gain-of-function mutations in human NLRs result

in autoinflammatory diseases [25�]. Similarly, several

aberrant phenotypes have been shown for a number of

constitutively active plant NLRs [60]. In Arabidopsis, the

uni-1D mutant results from a gain-of-function mutation in

the LRR domain of a gene encoding a CC-NLR. uni-1D
up-regulates SA-dependent Pathogenesis-Related (PR)

genes and is characterized by SA-independent morpho-

logical defects through the accumulation of cytokinin,

indicating that activation of this NLR protein activation

can engage the cytokinin pathway [61].

Gain-of-function NLR mutations have also been linked

to chilling responses. A mutation in the NB domain of

Arabidopsis RPP4 (chs2) results in sensitivity to low

temperature and autoimmunity [62]. However, no

obvious phenotype can be observed at normal tempera-

tures. Similarly chs3 exhibits temperature-sensitive phe-

notypes at chilling temperature as a result of activated

defense responses, in this case mediated by the gain-of-

function mutation in the CHS3 gene encoding an unusual

TIR-NLR that carries a C-terminal zinc-binding LIM

domain [63]. Additional evidence of inappropriate acti-

vation of NLR proteins in plants is represented by hybrid

necrosis. Many inter-species or intra-species crosses result

in drastic phenotypes such as dwarfism, necrosis, and

sometimes lethality. The molecular events that trigger

hybrid necrosis in tomato and Arabidopsis were recently

shown to involve epistatic interaction between NLRs

[64], suggesting that the incompatibility is due to a

mis-regulated activation of the immune responses. All

A new eye on NLR proteins: focusing on clarity or complexity? Bonardi et al. 45
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these studies suggest that exquisite control must be

exerted on innate immune receptor activation in order

to prevent aberrant and detrimental responses.

NLRs: insiders or outsiders?
Previous studies revealed the role of NLRs as cytoplasmic

(in animals) or membrane-bound sensors (in plants) for

MAMPs or pathogen effectors. A classic example is Arabi-

dopsis CC-NLR Resistance to Pseudomonas syringae pv.

maculicula 1 (RPM1) which resides on the inner plasma-

membrane before, and upon activation [65��]. Although

Nod1 and Nod2 were first described as cytosolic receptors,

their distribution at the plasma membrane is crucial for the

recruitment of RIP2, the activation of NF-kB, and for the

recently described Nod-dependent autophagy to limit

intracellular bacterial entry [22�,66,67�].

Emerging evidence denotes the importance of nucleo-

cytoplasm trafficking of some immune receptors for proper

immune responses. A classic example in animals is the

master co-activator CIITA, a key regulator of major histo-

compatibility complex (MHC) class II gene expression

that functions as a scaffold for transcription factors that

target MHC class II gene promoters [68]. Similar to CIITA,

NLRC5 was recently described as a transcriptional

regulator of MHC class I that shuttles between cytosol

46 Innate immunity
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NLR functions in plant and animal cells. (a) In plants, exposure to pathogen effectors results in activation of NLR proteins. NLRs can either be localized at

the plasma membrane, the cytosol, or shuttle between the cytosol and the nucleus. Recognition of effectors can either be direct (L6, MLA10, Rx) or

mediated by host proteins (RPM1, RPS2, N). RPM1 and RPS2 recognize the bacterial effectors AvrRpm1 and AvrRpt2 respectively through either

phosphorylation or cleavage of the host protein RIN4. N recognizes the 50 kDa helicase (p50) domain of Tobacco Mosaic Virus, which recruits the

chloroplastic protein NRIP1 to form an immune receptor complex through N TIR domain. Activation of MLA10 and L6 following recognition of AVRA10 and

AvrL567through their respective LRR domains results in homodimerization through their N-terminal domains. Rx is activated by recognition of the Potato

Virus X coat protein (CP) and activation results in the inhibition of the cytoplasmic retention protein RanGAP2. SNC1 shuttles from the cytoplasm to the

nucleus upon activation from a yet unknown signal. In the nucleus SNC1 recruits the transcriptional co-repressor TPR1, which normally associates to

histone deacetylase 19 (HDA19) to repress transcription of defense-related genes. RRS1 is a TIR-NLR that carries a WRKY domain at its C-terminus and

localizes to the nucleus. PopP2 is an effector from Ralstonia solanacearum that associates to RRS1 in the nucleus. Transcriptional activity for the WRKY

domain of RRS1 has not yet been reported. ADR1 NLRs are activated downstream of an oxidative burst derived from either effector-mediated activation of

unrelated NLRs or MAMP recognition. ADR1 proteins are regulators of SA accumulation and SA levels are controlled by LSD1, a negative regulator of cell

death. SA is essential for Non-expressor or PR genes 1 (NPR1) function to transcriptionally regulate defense-related genes. (b) In animals MAMPs are

perceived by cytoplasmic NLRs, however Nod2 is functional at the plasma membrane where it perceives PGN. Nod2 responds to PGN and its activation

triggers the recruitment of the adaptor protein RIP2, resulting in downstream signaling and the expression of pro-inflammatory cytokines. Moreover, Nod2

recruits the autophagy protein ATG16L to the plasma membrane at the bacterial entry site in a mechanism that does not require RIP2. Additionally, Nod2

acts in synergy with NLRP1 in PNG sensing and subsequent caspase-1 activation, thus cleavage of IL-1b zymogen. The NLRC4 inflammasome is

activated in response to the bacterial proteins flagellin (flg) and PrgJ. The bacterial ligands trigger oligomerization of NLRC4 with the bacterial sensor NAIP

NLRs. The NAIP2-NLRC4 complex confers specificity for PrgJ recognition, whereas NAIP5-NLRC4 to flg. In both cases activation of the downstream

signaling results in caspase-1 activation and cytokines secretion via recruitment of the adaptor protein ASC (Apoptosis-associated Speck-like Protein

Containing a CARD). CIITA and NLRC5 shuttle between the cytoplasm and the nucleus and function as transcriptional regulators of genes encoding the

major histocompatibility complex I and II. CIITA requires its GTPase activity to access the nucleus, thus to recruit transcription factors (TFs) and histone

modifying enzymes. Filled stars indicate a requirement of an intact P-loop for the NLR function, an empty star indicates that an intact P-loop is dispensable

for the function, as suggested by mutagenesis and/or biochemical analysis.
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and nucleus to mediate MHC class I immune responses

[69��].

In plants, nuclear localization seems crucial for a number of

NLRs. A putative function as transcriptional regulator for

NLRs was suggested for Arabidopsis resistance to Ralsto-

nia solanacearum 1 (RRS1), an atypical immune receptor

that contains the TIR-NB-LRR domains and a WRKY

motif of plant transcription factors. Although transcrip-

tional activity has not yet been described for this protein,

its nuclear localization [70] suggests that RRS1 could be a

transcriptional regulator of the plant immune responses.

An additional striking example is Suppressor of npr1-1,

Constitutive 1 (SNC1), an Arabidopsis TIR-NLR protein

with unknown pathogen detection function. A mutation

in the snc1 mutant leads to ectopic auto-activation and to

enhanced disease resistance [71]. Intriguingly, SNC1

might function analogously to transcriptional regulators

CIITA and NLRC5. Recent genetic and biochemical

evidence suggest that Topless-related 1 (TPR1) func-

tions as a transcriptional co-repressor of negative regula-

tors of immune responses [72�]. This function requires

the physical association between the nuclear pools of

TPR1 and SNC1. Thus SNC1 likely activates defense

responses by modulating the transcriptional repression

activity of TPR1 on targets that would otherwise be

detrimental to proper immune responses.

Nuclear-cytoplasmic partitioning is an effector-indepen-

dent feature of MLA10, RPS4, N, and SNC1 and is

required for the induction of defense responses [73].

Additionally, Rx was shown to localize both to the cyto-

plasm and the nucleus [74�] and to physically associate

with a member of the Ran GTPase Activating Protein

family (RanGAP2) that controls nucleo-cytoplasmic traf-

ficking of macromolecules through the nuclear pore [75].

Effector-dependent activation of Rx occurs in the cyto-

plasm and nucleotide binding is an essential step for

nuclear import. The LRR domain prevents Rx from

being imported into the nucleus, indicating that intra-

molecular interactions regulate nuclear accessibility [74�].
RanGAP2 was shown to function as a cytoplasmic reten-

tion factor for Rx in order to fine-tune defense signaling.

Enforced nuclear accumulation of Rx prevents a normal

HR, and thus suppresses resistance to PVX [76�]. These

data suggest that effector-dependent, P-loop-dependent

activation of Rx occurs in the cytoplasm and triggers an

intra-molecular conformational change that releases the

inhibiting function of the LRR domain. It is tempting to

speculate that this change might destabilize the inter-

action between RanGAP2 and the Rx CC domain, thus

allow Rx trafficking into the nucleus.

Although nuclear-cytoplasmic partitioning is crucial for

several immune receptors (Figure 3), the molecular

events subsequent to nuclear import remain elusive.

We can only speculate that NLRs shuttling into the

nucleus might function as activators or repressors of

defense-related gene expression. To investigate this

possibility, the isolation of the nuclear complexes that

associate to these plant NLRs will be essential for the

characterization of putative target genes.

Conclusions
Since the first NLRs were cloned in the mid 1990s [6,77],

we have witnessed a remarkable growth in understanding

of their functions in both animal and plant immune

systems. However, the more we know, the less clear

are generalizable analogies among this fascinating class

of proteins. In the past two years, several studies on varied

sites of pre-activation and post-activation localization,

expanded functions beyond pathogen recognition, and

dispensable P-loop activity for several NLRs do not

support a simple unifying model to describe how these

proteins are activated and how they function. This is

likely due to an evolutionarily flexible juxtaposition of

highly variable self-association interfaces with a hair

trigger conformational switch. This flexibility proved to

be useful in a variety of intracellular contexts and in

coordination with defense signaling machines.

Many questions remain unanswered to drive research

unfold the mechanisms that characterize NLR proteins:

What are the molecular dynamics that regulate NLR

activation? What are the downstream events that follow

NLR activation? How is enzymatic activity dispensable

for some NLR functions? What is the diversity of sites

and modes of NLR activation in plant and animal cells?

And what does this tell us about the cellular machinery

with which they interact?
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