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Direct involvement of leucine-rich repeats in assembling
ligand-triggered receptor—coreceptor complexes

Jianming Li

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048

common signaling mechanism

of cell-cell and cell-environment

communications in both animals

and plants is mediated by re-
ceptor-like kinases (RLKS), which evolved
independently in the two kingdoms but
share a similar domain organization with
a ligand-binding extracellular domain
(ECD) connected via a single transmem-
brane helix to an intracellular kinase do-
main (KD) (1). The plant RLKs form
a huge monophyletic protein superfamily
with ~440 and 790 members in Arabidopsis
and rice, respectively (2). Based on se-
quence motifs in their ECDs, plant RLKs
can be grouped into ~20 families, with the
largest family containing 1-32 tandem
copies of leucine-rich repeat (LRR) (2),
a widespread structural motif of ~24 amino
acids rich in leucine. These LRR-RLKSs can
be functionally classified into two major
groups: the first group controls plant
growth/development, such as BRI1, which
perceives the plant steroid hormone bras-
sinosteroids (BRs) (3), and the second
group is involved in plant defense, in-
cluding FLS2 and EFR, which recognize
bacterial flagellin and translational elonga-
tion factor EF-Tu, respectively (4, 5). It is
well known that ligand-induced homo-
dimerization is a common mechanism to
activate receptor kinases in animals (6).
By contrast, plant LRR-RLKSs, which likely
exist as constitutive homodimers, are
thought to be activated by ligand-induced
heteromerization between a ligand-bound
LRR-RLK and a non-ligand-binding LRR-
RLK (7). Little is known about how ligands
trigger the formation of such receptor—
coreceptor complexes, however. In PNAS,
Jaillais et al. (8) at the Salk Institute report
a significant discovery that provides a key
advance in our understanding of the ligand-
induced formation of receptor—coreceptor
complexes.

Among hundreds of plant LRR-RLKs,
BAKI1, having only five extracellular LRRs
(eLRRs), is one of the most studied
LRR-RLKSs because of its multifunction-
ality in regulating both plant growth and
defense (9). BAK1 was initially discov-
ered as a coreceptor for the BR receptor
BRI1 carrying 25 eLRRs (10, 11) and was
later recognized as a coreceptor for the
flagellin receptor FLS2 with 28 eLRRs
(12, 13). Further studies revealed that
BAKI1 is also required for plant defense
responses to other microbe-derived li-
gands [better known as microbe-associated

www.pnas.org/cgi/doi/10.1073/pnas.1104057108

Fig. 1. A “double-lock” model for stabilizing a
BR-triggered BRI1-BAK1 complex. Details are pro-
vided in the text. Double horizontal bars indicate
the plasma membrane, the crescents mark the
autoinhibitory C-terminal end, and the stars mark
phosphorylation. (A) In the absence of BR, neither
BRI1 nor BAK1 is active. The autoinhibitory C ter-
minus of BRI1 and BKI1 binding to BRI1 prevents
the BRI1-BAK1 interaction. (B) BR binding to the
ligand-binding domain of BRI1 not only triggers a
conformational change in its ECD to allow its low-
affinity dimerization with the BAK1 ECD but also
causes a structural rearrangement in the BRI1 KD
to activate its kinase activity. The slightly activated
BRI1 autophosphorylates to lease its autoinhibitory
C terminus and transphosphorylates to dissociate
BKI1 from the plasma membrane, thus enabling
physical docking of the KDs of BRI1 and BAK1 to
form a stable receptor—coreceptor complex.

molecular patterns (MAMPs)], including
bacterial peptidoglycan and EF-Tu (12—
14). BAK1 does not directly participate
in ligand binding or signal transduction
but is rapidly recruited to ligand-bound
BRI1, FLS2, and possibly other MAMP-
recognition LRR-RLKSs to activate their
kinase/signaling activities fully via trans-
phosphorylation (15, 16). The BRI1/FLS2-
BAKI1 pairs have become paradigms for
understanding the activation/signaling
mechanisms of plant LRR-RLKs; how-
ever, little is known about what deter-
mines the binding specificity of the BRI1/
FLS2-BAK1 complexes.

The study by Jaillais et al. (8) took ad-
vantage of a previously described gain-
of-function allele of BAKI (bakI®®) (17)
to reveal a crucial role of eLRRs in de-
termining the binding specificity and driv-
ing the receptor-coreceptor interaction.
The Arabidopsis elg (elongated ) mutant was
originally isolated as a suppressor of a
dwarf mutant deficient in the plant growth
hormone gibberellins (18) and was later
found to carry an Asp(D)122-Asn(N)
mutation in the third LRR of BAK1 re-
sponsible for a BR-hypersensitive pheno-
type (17). D122 is highly conserved be-

tween BAKI1 and its homologs and is
predicted to be a solvent-exposed residue
on the concave surface of a curved sole-
noid LRR structure (19), which provides
a surface for binding ligand/protein (20).
Using a transgenic approach, Jaillais et al.
(8) confirmed the stimulatory effect of
bak1°® on BR signaling and made a sur-
prising discovery that the D122N muta-
tion selectively affected several BAK1-
dependent immune responses, with bak1°'¢
blocking the plant immunity to peptido-
glycan and fig22 (an active flagellin-
derived peptide) but having no effect on
the EF-Tu-triggered plant defense. Such
differential behaviors of bak1°'¢ on BR
signaling/plant immunity were not caused
by changes in the protein abundance or
subcellular localization of BAK1, BRI1
or FLS2 but rather by altered affinity

of bak1® to bind different LRR-RLKSs.
A coimmunoprecili)itation experiment
showed that bak1® failed to bind FLS2
in response to flg22 but interacted well
with BRI1 even when the endogenous
BR contents were below the level needed
to maintain a detectable BRI1 binding

to wild-type BAK1 (8).

That a single amino acid change in an
LRR motif prevented the recruitment of
BAKI1 to the fig22-bound FLS2 but en-
hanced the BRI1-BAKI1 binding was
a very significant discovery because it
convincingly demonstrated a crucial role
of eLRRs in selecting binding partners
and in driving the formation of ligand-
induced LRR-RLK complexes in plants.
Previous studies suggested that BR-
induced BRI1-BAKI interaction was
largely mediated by their KDs, which were
known to interact in vitro and in yeast
(10, 11, 15), whereas a recent model sug-
gesting the ECD involvement in the FLS2-
BAK1 binding lacked any experimental
support (19). The selective binding of
BAKI1 to different LRR-RLKSs is consis-
tent with a recent yeast two-hybrid study
showing that BAK1 interacted with the
LRR-containing ECD of a tomato LRR
receptor-like protein, LeEix1, but failed to
bind that of its closest homolog, LeEix2
(21). It is quite possible that ligand binding
to an LRR-containing ECD alters its
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conformation, exposing a binding surface
for the BAK1 LRR domain to drive the
formation of a receptor—coreceptor com-
plex. Such an induced exposure of an
extracellular dimerization interface is a
common mechanism for ligand-triggered
dimerization of receptor kinases in ani-
mals (6). For example, the EGF-induced
dimerization of EGF receptor (EGFR) is
mediated by homophilic interaction of

a protruding loop in the structurally re-
arranged ECDs of two ligand-bound
EGFRs (22).

Is the LRR-mediated interaction be-
tween two LRR-RLKSs sufficient to
drive the formation of a stable receptor—
coreceptor complex? The answer is “no”
in the case of the BRI1-BAK1 complex.
It was known that kinase-dead mutations
had no effect on the BRI1-BAK1 in-
teraction when coexpressed in yeast (11);
however, a recent study showed that
a kinase-dead mutation of BRI1 but not
BAKI1 inhibited the BR-dependent BRI1-
BAKI1 binding in transgenic plants (15).
The requirement for an active BRI1 ki-
nase to form a stable BRI1-BAK1 com-
plex is most likely attributable to an
autoinhibitory C terminus and strong
binding of BRI1 with BRI1 KINASE IN-
HIBITORI1 (BKI1) (Fig. 14). BKI1 is
a membrane-associated protein capable of
blocking the in vitro BRI1-BAK1 binding
and rapidly dissociates from the plasma
membrane in vivo upon phosphorylation
by the BR binding-activated BRI1 (23, 24)
that also autophosphorylates to release
the autoinhibitory C terminus (25).
Therefore, the formation of a BR-induced
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BRI1-BAKI1 complex likely involves

a “double-lock” mechanism that requires
participation of both ECDs and KDs of
BRI1 and BAKI1 (8). BR binding not only
alters the conformation of the BRI1 ECD
to expose a dimerization interface for
low-affinity binding to the BAK1 LRR
domain but rearranges the BRI1 KD
structure to activate its kinase activity,
causing release of the autoinhibitory BRI1

The formation of a BR-
induced BRI1-BAK1
complex likely involves
a “double-lock”
mechanism.

C terminus and rapid dissociation of BKI1
to form a stable BRI1-BAK1 complex
(Fig. 1B). Such a double-lock mechanism
likely provides binding flexibility to allow
the versatile BAK1 to be recruited to
different ligand-binding LRR-RLKS yet
enables the formation of a stable re-
ceptor—coreceptor complex via physical
docking of their KDs to ensure efficient
transphosphorylation between BAK1 and
its legitimate ligand-bound partners. In
addition, this dimerization model allows
the formation of a receptor—coreceptor
complex to be regulated by both extra-
cellular and intracellular signals.

It remains to be determined whether
the double-lock model also applies to the
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MAMP-triggered formation of pattern-
recognition receptor (PRR)-BAK1 com-
plexes. A recent study suggested that

the flg22-triggered FLS2-BAK1 bind-

ing does not require a phosphorylation-
dependent process (16). Nevertheless,

it is quite possible that ligand-induced
conformational change in the FLS2 KD is
sufficient to enable its physical docking to
the BAK1 KD and subsequent FLS2-
BAK1 transphosphorylation, ensuring the
full activation of the FLS2 signaling po-
tential. It is interesting to note that al-
though the formation of EGF-induced
EGFR dimer does not require a phos-
phorylation event, it does involve an EGF-
triggered structural rearrangement in the
EGFR KD, exposing a juxtamembrane
segment that latches the cytoplasmic KDs
of dimerizing EGFRs (6).

Given the multifunctionality of BAKI,
it is anticipated that the BRI1/FLS2-
BAK1 complexes will continue to be
paradigms in the coming years to study
plant LRR-RLKs and cross-talk mecha-
nisms coordinating plant growth and
defense. Site-directed mutagenesis;
chemical cross-linking; and structural
analyses of BAK1, BRI1, and FLS2,
coupled with in vivo kinetic studies of
LRR-RLK heterooligomerization, will
surely shed new light on the biochemical
mechanisms of the ligand-induced for-
mation of plant receptor—coreceptor
complexes.
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